login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of the second largest parts in the partitions of n into 4 prime parts.
4

%I #9 Jun 17 2022 13:36:55

%S 0,0,0,0,0,0,0,0,2,2,3,5,6,5,11,8,13,12,20,17,28,15,32,26,41,24,53,33,

%T 75,48,83,57,103,54,126,80,143,71,170,93,219,112,217,122,276,120,310,

%U 145,320,148,376,160,446,190,443,218,532,196,587,240,613,246

%N Sum of the second largest parts in the partitions of n into 4 prime parts.

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} c(k) * c(j) * c(i) * c(n-i-j-k) * i, where c = A010051.

%F a(n) = A308809(n) - A308771(n) - A308772(n) - A308774(n).

%t Table[Sum[Sum[Sum[i (PrimePi[k] - PrimePi[k - 1])*(PrimePi[j] - PrimePi[j - 1]) (PrimePi[i] - PrimePi[i - 1]) (PrimePi[n - i - j - k] - PrimePi[n - i - j - k - 1]), {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 100}]

%Y Cf. A010051, A259194, A308771, A308772, A308774, A308809.

%K nonn

%O 0,9

%A _Wesley Ivan Hurt_, Jun 23 2019