login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A308770
Sum of the largest parts of the partitions of n into 4 squarefree parts.
4
0, 0, 0, 0, 1, 2, 5, 5, 13, 17, 29, 32, 44, 52, 75, 81, 118, 130, 176, 198, 261, 262, 351, 362, 470, 478, 617, 621, 787, 801, 951, 978, 1182, 1184, 1413, 1469, 1747, 1789, 2123, 2160, 2574, 2593, 3012, 3093, 3644, 3679, 4245, 4384, 5024, 5097, 5738, 5891
OFFSET
0,6
FORMULA
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k)^2 * (n-i-j-k) , where mu is the Möbius function (A008683).
a(n) = A308783(n) - A308768(n) - A308762(n) - A308769(n).
MATHEMATICA
Table[Sum[Sum[Sum[(n - i - j - k) * MoebiusMu[k]^2*MoebiusMu[j]^2* MoebiusMu[i]^2*MoebiusMu[n - i - j - k]^2, {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 100}]
Table[Total[Select[IntegerPartitions[n, {4}], AllTrue[#, SquareFreeQ]&][[;; , 1]]], {n, 0, 60}] (* Harvey P. Dale, Oct 04 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 23 2019
STATUS
approved