login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308768
Sum of the smallest parts of the partitions of n into 4 squarefree parts.
4
0, 0, 0, 0, 1, 1, 2, 2, 5, 5, 7, 8, 12, 11, 16, 16, 23, 23, 30, 32, 44, 43, 56, 57, 72, 72, 90, 87, 114, 112, 135, 137, 169, 164, 197, 196, 233, 238, 282, 276, 337, 332, 381, 378, 454, 447, 525, 523, 606, 609, 698, 678, 800, 799, 907, 895, 1050, 1022, 1157
OFFSET
0,7
FORMULA
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k)^2 * k, where mu is the Möbius function (A008683).
a(n) = A308783(n) - A308762(n) - A308769(n) - A308770(n).
MATHEMATICA
Table[Sum[Sum[Sum[k * MoebiusMu[k]^2*MoebiusMu[j]^2*MoebiusMu[i]^2* MoebiusMu[n - i - j - k]^2, {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 23 2019
STATUS
approved