login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168391
Triangle T(n, k) = [x^k]( p(n,x) ), where p(n, x) = Sum_{k=1..n} A001263(n,k)*binomial(x+k -1, n-1), read by rows.
1
1, 1, 2, 2, 5, 5, 6, 19, 21, 14, 24, 84, 126, 84, 42, 120, 468, 750, 720, 330, 132, 720, 2988, 5496, 5445, 3795, 1287, 429, 5040, 22356, 43120, 50435, 35035, 19019, 5005, 1430, 40320, 186912, 391688, 472472, 398398, 208208, 92092, 19448, 4862
OFFSET
1,3
COMMENTS
The Z-transform of the triangle gives the Narayan triangle (A001263).
Every other polynomial, of p(n, x), has a factor of (1+2*x), just like the higher Sierpinski-Pascal Worpitzky form polynomials.
FORMULA
T(n, k) = [x^k]( p(n,x) ), where p(n, x) = Sum_{k=1..n} A001263(n,k)*binomial(x+k -1, n-1).
From G. C. Greubel, Mar 28 2022: (Start)
Sum_{k=0..n-1} T(n, k) = A001710(n+1).
T(n, 0) = n!. (End)
EXAMPLE
Triangle begins as:
1;
1, 2;
2, 5, 5;
6, 19, 21, 14;
24, 84, 126, 84, 42;
120, 468, 750, 720, 330, 132;
720, 2988, 5496, 5445, 3795, 1287, 429;
5040, 22356, 43120, 50435, 35035, 19019, 5005, 1430;
40320, 186912, 391688, 472472, 398398, 208208, 92092, 19448, 4862;
MATHEMATICA
p[n_, x_]:= p[n, x]= ((-1)^(n+1)/(n+1))*Sum[Binomial[n-1, k-1]*Binomial[n+1, k]*Pochhammer[1-k-x, n-1], {k, n}];
A168391[n_]:= CoefficientList[p[x, n], x];
Table[A168391[n], {n, 12}]//Flatten (* G. C. Greubel, Mar 28 2022 *)
PROG
(Sage)
@CachedFunction
def p(n, x): return ((-1)^(n+1)/(n+1))*sum( binomial(n+1, k)*binomial(n-1, k-1)*rising_factorial(1-k-x, n-1) for k in (1..n) )
def A168391(n, k): return ( p(n, x) ).series(x, n+1).list()[k]
flatten([[A168391(n, k) for k in (0..n-1)] for n in (1..12)]) # G. C. Greubel, Mar 28 2022
CROSSREFS
Sequence in context: A069896 A053246 A219651 * A157123 A265764 A308768
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Nov 24 2009
EXTENSIONS
Edited by G. C. Greubel, Mar 28 2022
STATUS
approved