login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168388
First number in the n-th row of A172002.
4
1, 3, 5, 13, 21, 39, 57, 89, 121, 171, 221, 293, 365, 463, 561, 689, 817, 979, 1141, 1341, 1541, 1783, 2025, 2313, 2601, 2939, 3277, 3669, 4061, 4511, 4961, 5473, 5985, 6563, 7141, 7789, 8437, 9159, 9881, 10681, 11481, 12363, 13245, 14213, 15181, 16239, 17297
OFFSET
1,2
FORMULA
a(2*n+1) = A166464(n) a(2*n) = A166911(n).
a(n+1) - a(n) = A093907(n-1), n>1.
a(n) = 2*a(n-1) +a(n-2) -4*a(n-3) +a(n-4) +2*a(n-5) -a(n-6).
G.f.: x*(1 - x^2 + 2*x)*(1 - x + x^2 + x^3)/( (1+x)^2 * (x-1)^4).
a(n+1) = A168380(n)+1.
From G. C. Greubel, Jul 19 2016: (Start)
a(n) = (12 + n + 3*(-1)^n*n + 2*n^3)/12.
E.g.f.: (1/12)*( -3*x - 12*exp(x) + (12 + 3*x + 6*x^2 + 2*x^3)*exp(2*x) )*exp(-x). (End)
MATHEMATICA
LinearRecurrence[{2, 1, -4, 1, 2, -1}, {1, 3, 5, 13, 21, 39}, 50] (* Harvey P. Dale, Nov 29 2014 *)
Table[(n + 1) (3 + 2 n^2 + 4 n - 3 (-1)^n)/12 + 1, {n, 0, 46}] (* Michael De Vlieger, Jul 19 2016, after Vincenzo Librandi at A168380 *)
PROG
(Magma) [(12+n+3*(-1)^n*n+2*n^3)/12: n in [1..60]]; // Vincenzo Librandi, Jul 20 2016
CROSSREFS
Cf. A168234.
Sequence in context: A222752 A172143 A218790 * A059872 A059873 A239314
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Nov 24 2009
EXTENSIONS
Edited and extended by R. J. Mathar, Mar 25 2010
STATUS
approved