login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059873
The lexicographically earliest sequence of binary encodings of solutions satisfying the equation given in A059871.
6
1, 3, 5, 13, 21, 46, 78, 175, 303, 639, 1143, 2539, 4542, 9214, 17406, 36735, 69374, 139254, 270327, 556031, 1079294, 2162678, 4259819, 8642558, 17022974, 34078590, 67632893, 136249338, 270401534, 541064701, 1077935867, 2162163707
OFFSET
1,2
COMMENTS
The encoding is explained in A059872. Apply bin_prime_sum (see A059876) to this sequence and you get A000040, the prime numbers.
LINKS
MAPLE
primesums_primes_search(16); primesums_primes_search := (upto_n) -> primesums_primes_search_aux([], 1, upto_n); primesums_primes_search_aux := proc(a, n, upto_n) local i, p, t; if(n > upto_n) then RETURN(a); fi; p := ithprime(n); for i from (2^(n-1)) to ((2^n)-1) do t := bin_prime_sum(i); if(t = p) then print([op(a), i]); RETURN(primesums_primes_search_aux([op(a), i], n+1, upto_n)); fi; od; RETURN([op(a), `and no more found`]); end;
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 05 2001
EXTENSIONS
More terms from Naohiro Nomoto, Sep 12 2001
More terms from Larry Reeves (larryr(AT)acm.org), Nov 20 2003
STATUS
approved