login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172143
a(n) = (A172126(n) - 1)/3.
2
0, 1, 3, 5, 13, 21, 28, 53, 85, 113, 213, 227, 341, 453, 853, 909, 1365, 1813, 1820, 3413, 3637, 5461, 7253, 7281, 13653, 14549, 14563, 21845, 29013, 29125, 54613, 58197, 58253, 87381, 116053, 116501, 116508, 218453, 232789, 233013, 349525, 464213, 466005, 466033
OFFSET
1,3
COMMENTS
Conjecture: sequence consists of an infinite number of subsequences S(m,0) = A172241(n) = (1/18)[8^n-(-1)^n-9], m>0, S(m,n+1) = 4*S(m,n)+1. The first subsequences
S(1,n) = A002450(n) = (4^n-1)/3 = 0, 1, 5, 21, 85, ...,
S(2,n) = A072197(n) = (10*4^n-1)/3 = 3, 13, 53, 213, ...,
S(3,n) = (85*4^n-1)/3 = 28, 113, 453, ...,
S(4,n) = (682*4^n-1)/3 = 227, 909, 3637, ..., and generally,
S(m,n) = [(3*A172241(m) + 1) * 4^n - 1]/3.
LINKS
MATHEMATICA
seq[max_] := Module[{kmax = Floor[Log[4, 3*max+1]], s = {}, s1, odd}, Do[odd = (4^k-1)/3; s1 = 2^Range[0, Floor[Log2[max/odd]]] * odd; s = Join[s, s1], {k, 1, kmax}]; Select[(Union[s] - 1)/3, IntegerQ]]; seq[10^7] (* Amiram Eldar, Sep 01 2024 *)
PROG
(PARI) for(n=1, 300000, o=3*n/2^valuation(n, 2)+1; b=ispower(o); if(b&&b%2==0&&round(sqrtn(o, b/2))==4&&(n-1)%3==0, print1((n-1)/3, ", ")))
CROSSREFS
KEYWORD
nonn
AUTHOR
Ralf Stephan, Nov 19 2010
EXTENSIONS
More terms from Amiram Eldar, Sep 01 2024
STATUS
approved