

A172141


Number of ways to place 2 nonattacking nightriders on an n X n board.


8



0, 6, 28, 96, 240, 518, 980, 1712, 2784, 4310, 6380, 9136, 12688, 17206, 22820, 29728, 38080, 48102, 59964, 73920, 90160, 108966, 130548, 155216, 183200, 214838, 250380, 290192, 334544, 383830, 438340, 498496, 564608, 637126
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

A nightrider is a fairy chess piece that can move (proportionate to how a knight moves) in any direction.


REFERENCES

Christian Poisson, Echecs et mathematiques, Rex Multiplex 29/1990, p.829


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Christopher R. H. Hanusa, T Zaslavsky, S Chaiken, A qQueens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853, a12016
V. Kotesovec, Number of ways of placing nonattacking queens and kings on boards of various sizes


FORMULA

Explicit formula (Christian Poisson, 1990): a(n) = n(3n^3  5n^2 + 9n  4)/6 if n is even and a(n) = n(n  1)(3n^2  2n + 7)/6 if n is odd.
G.f.: 2x^2*(x^2+2x+3)(2x^2+x+1)/((x1)^5*(x+1)^2) [From Vaclav Kotesovec, Mar 25 2010]


MATHEMATICA

CoefficientList[Series[2 x (x^2 + 2 x + 3) (2 x^2 + x + 1) / ((x  1)^5 (x + 1)^2), {x, 0, 40}], x] (* Vincenzo Librandi, May 27 2013 *)


CROSSREFS

A036464, A172123, A172132, A172137.
Sequence in context: A091321 A125310 A138874 * A172132 A011856 A276041
Adjacent sequences: A172138 A172139 A172140 * A172142 A172143 A172144


KEYWORD

easy,nonn


AUTHOR

Vaclav Kotesovec, Jan 26 2010


STATUS

approved



