The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A172141 Number of ways to place 2 nonattacking nightriders on an n X n board. 8
 0, 6, 28, 96, 240, 518, 980, 1712, 2784, 4310, 6380, 9136, 12688, 17206, 22820, 29728, 38080, 48102, 59964, 73920, 90160, 108966, 130548, 155216, 183200, 214838, 250380, 290192, 334544, 383830, 438340, 498496, 564608, 637126 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A nightrider is a fairy chess piece that can move (proportionate to how a knight moves) in any direction. REFERENCES Christian Poisson, Echecs et mathematiques, Rex Multiplex 29/1990, p.829 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Christopher R. H. Hanusa, T. Zaslavsky, and S. Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853, a12016 Vaclav Kotesovec, Number of ways of placing non-attacking queens and kings on boards of various sizes Index entries for linear recurrences with constant coefficients, signature (3,-1,-5,5,1,-3,1). FORMULA Explicit formula (Christian Poisson, 1990): a(n) = n*(3*n^3 - 5*n^2 + 9*n - 4)/6 if n is even and a(n) = n*(n - 1)*(3*n^2 - 2*n + 7)/6 if n is odd. G.f.: 2*x^2*(3+2*x+x^2)*(1+x+2*x^2)/((1-x)^5*(1+x)^2). - Vaclav Kotesovec, Mar 25 2010 From G. C. Greubel, Apr 21 2022: (Start) a(n) = (1/12)*n*(3*(-1)^n - (11 - 18*n + 10*n^2 - 6*n^3)). E.g.f.: (x/12)*(-3*exp(-x) + (3 + 30*x + 26*x^2 + 6*x^3)exp(x)). (End) MATHEMATICA CoefficientList[Series[2*x*(3+2*x+x^2)*(1+x+2*x^2)/((1-x)^5*(1+x)^2), {x, 0, 40}], x] (* Vincenzo Librandi, May 27 2013 *) PROG (Magma) [(n/12)*(3*(-1)^n -(11 -18*n +10*n^2 -6*n^3)): n in [1..40]]; // G. C. Greubel, Apr 21 2022 (SageMath) [(n/12)*(3*(-1)^n -(11 -18*n +10*n^2 -6*n^3)) for n in (1..40)] # G. C. Greubel, Apr 21 2022 CROSSREFS Cf. A036464, A172123, A172132, A172137. Sequence in context: A336535 A342380 A138874 * A172132 A011856 A276041 Adjacent sequences: A172138 A172139 A172140 * A172142 A172143 A172144 KEYWORD easy,nonn AUTHOR Vaclav Kotesovec, Jan 26 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 20:58 EDT 2023. Contains 363042 sequences. (Running on oeis4.)