login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168386
Arithmetic derivative of the double factorial of n.
2
0, 0, 1, 1, 12, 8, 112, 71, 1472, 1269, 17408, 14904, 270336, 204147, 4199424, 4143285, 87834624, 72462870, 1797783552, 1411253955, 40414740480, 36183623805, 937430876160, 845972658090, 26095323709440, 24311657884500, 707908274749440, 869872809558375
OFFSET
0,5
LINKS
FORMULA
a(n) = A003415(A006882(n)). - R. J. Mathar, Nov 26 2009
MAPLE
A003415 := proc(n) local pfs ; if n <= 1 then 0 ; else pfs := ifactors(n)[2] ; n*add(op(2, p)/op(1, p), p=pfs) ; fi; end proc:
A168386 := proc(n) A003415(doublefactorial(n)) ; end proc:
seq(A168386(n), n=0..80) ; # R. J. Mathar, Nov 26 2009
# second Maple program:
d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):
a:= proc(n) option remember;
`if`(n<2, 0, a(n-2)*n+doublefactorial(n-2)*d(n))
end:
seq(a(n), n=0..40); # Alois P. Heinz, Jun 06 2015
MATHEMATICA
d[n_] := n*Total[#2/#1& @@@ FactorInteger[n]];
a[0] = a[1] = 0; a[n_] := d[n!!];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, May 18 2018 *)
PROG
(Python 3.8+)
from collections import Counter
from sympy import factorial2, factorint
def A168386(n): return sum((factorial2(n)*e//p for p, e in sum((Counter(factorint(m)) for m in range(n, 1, -2)), start=Counter({2:0})).items())) if n > 1 else 0 # Chai Wah Wu, Jun 12 2022
CROSSREFS
Sequence in context: A206478 A164675 A121961 * A338825 A338809 A038334
KEYWORD
easy,nonn
AUTHOR
EXTENSIONS
Program replaced by a structured program - R. J. Mathar, Nov 26 2009
STATUS
approved