login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143566
E.g.f. satisfies A(x) = exp(x*A(x^2/2!)).
3
1, 1, 1, 4, 13, 46, 241, 1471, 9409, 67348, 564841, 4771801, 45459481, 463867834, 5060656693, 58878140686, 730612429681, 9556314730456, 131627520296929, 1912237000523623, 29032781640572881, 462811831018070206, 7687624300327129621, 133275225843052767244
OFFSET
0,4
LINKS
FORMULA
a(0) = 1; a(n) = (n-1)! * Sum_{k=0..floor((n-1)/2)} (2*k+1) * a(k) * a(n-1-2*k) / (2^k * k! * (n-1-2*k)!). - Seiichi Manyama, Nov 28 2023
MAPLE
A:= proc(n) option remember; if n<=0 then 1 else unapply(convert(
series(exp(x*A(n-2)(x^2/2)), x, n+1), polynom), x) fi
end:
a:= n-> coeff(A(n)(x), x, n)*n!:
seq(a(n), n=0..28);
MATHEMATICA
A[n_] := A[n] = If[n <= 0, 1&, Function[Normal[Series[Exp[y*A[n-2][y^2/2]], {y, 0, n+1}] /. y -> #]]]; a[n_] := Coefficient[A[n][x], x, n]*n!; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Feb 13 2014, after Maple *)
CROSSREFS
2nd column of A143565.
Cf. A138292.
Sequence in context: A149439 A014145 A354550 * A098841 A183775 A363547
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 24 2008
STATUS
approved