login
A050256
a(n) = floor(47*(n-3/2)^(3/2)).
2
16, 86, 185, 307, 448, 606, 778, 965, 1164, 1376, 1599, 1832, 2077, 2331, 2595, 2868, 3150, 3440, 3739, 4047, 4362, 4685, 5016, 5354, 5699, 6052, 6411, 6777, 7150, 7530, 7916, 8309, 8708, 9113, 9524, 9941, 10364, 10793, 11227, 11667, 12113, 12565, 13022, 13484
OFFSET
2,1
COMMENTS
Mentioned in the Diaconis-Mosteller article.
LINKS
P. Diaconis and F. Mosteller, Methods of studying coincidences, J. Amer. Statist. Assoc. 84 (1989), pp. 853-861.
Eric Weisstein's World of Mathematics, Birthday Problem
MAPLE
a:= n-> floor(47*(n-3/2)^(3/2)):
seq(a(n), n=2..55); # Alois P. Heinz, May 17 2023
PROG
(PARI) vector(50, n, n++; floor(47*(n-1.5)^(3/2))) \\ Derek Orr, Sep 05 2015
(PARI) a(n) = floor(47*(n-1.5)^1.5) \\ Charles R Greathouse IV, Sep 05 2015
CROSSREFS
Sequence in context: A223962 A252834 A183777 * A223835 A224143 A225007
KEYWORD
nonn
EXTENSIONS
First term removed by Derek Orr, Sep 05 2015
Offset corrected by Iain Fox, Nov 16 2017
Entry revised by N. J. A. Sloane, Jun 21 2023
STATUS
approved