login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118676
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+79)^2 = y^2.
10
0, 20, 161, 237, 341, 1140, 1580, 2184, 6837, 9401, 12921, 40040, 54984, 75500, 233561, 320661, 440237, 1361484, 1869140, 2566080, 7935501, 10894337, 14956401, 46251680, 63497040, 87172484, 269574737, 370088061, 508078661, 1571196900, 2157031484, 2961299640
OFFSET
1,2
COMMENTS
Also values x of Pythagorean triples (x, x+79, y).
Corresponding values y of solutions (x, y) are in A159758.
For the generic case x^2+(x+p)^2 = y^2 with p = m^2-2 a (prime) number > 7 in A028871, see A118337.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (83+18*sqrt(2))/79 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (10659+6110*sqrt(2))/79^2 for n mod 3 = 0.
FORMULA
a(n) = 6*a(n-3) -a(n-6) +158 for n > 6; a(1)=0, a(2)=20, a(3)=161, a(4)=237, a(5)=341, a(6)=1140.
G.f.: x*(20+141*x+76*x^2-16*x^3-47*x^4-16*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 79*A001652(k) for k >= 0.
MATHEMATICA
LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 20, 161, 237, 341, 1140, 1580}, 75] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2012 *)
PROG
(PARI) forstep(n=0, 100000000, [1, 3], if(issquare(2*n^2+158*n+6241), print1(n, ", ")))
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(20+141*x+76*x^2-16*x^3-47*x^4-16*x^5)/((1-x)*(1- 6*x^3+x^6)))); // G. C. Greubel, May 07 2018
CROSSREFS
Cf. A159758, A028871, A118337, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159759 (decimal expansion of (83+18*sqrt(2))/79), A159760 (decimal expansion of (10659+6110*sqrt(2))/79^2).
Sequence in context: A059601 A125357 A126515 * A067534 A041768 A221870
KEYWORD
nonn,easy
AUTHOR
Mohamed Bouhamida, May 19 2006
EXTENSIONS
Edited by Klaus Brockhaus, Apr 30 2009
STATUS
approved