login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143634
E.g.f. satisfies: A(x) = exp(x*A(((x+1)^3-1)/3)).
2
1, 1, 3, 22, 253, 4256, 96727, 2828274, 102988937, 4553158024, 239618067211, 14775790894734, 1053758625896077, 85965003368491300, 7947211237328151167, 825821792546485330306, 95772123012223308982673
OFFSET
0,3
LINKS
MAPLE
A:= proc(n, k::nonnegint) option remember; if n<=0 or k=0 then 1 else A(n-1, k)(((x+1)^k-1)/k) fi; unapply(convert(series(exp(x*%), x, n+1), polynom), x) end: a:= n-> coeff(A(n, 3)(x), x, n)*n!: seq(a(n), n=0..21);
MATHEMATICA
A[n_, k_] := Module[{f}, f[x_] = If[n <= 0 || k == 0, 1, A[n-1, k][((x+1)^k-1)/k]]; Normal[Series[Exp[x*f[x]], { x, 0, n+1}]] /. x -> #]&; a[n_] := Coefficient[A[n, 3][x], x, n]*n!; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Feb 14 2014, after Maple *)
CROSSREFS
Cf. 3rd column of A143632.
Sequence in context: A132693 A367845 A361097 * A054595 A054594 A242794
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 27 2008
STATUS
approved