Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Jan 19 2021 18:48:07
%S 1,2,4,8,16,53,67,122,135,270,321,329,1065,1907,4390,5132,5181,5700,
%T 5754,6189,13269,73632,73977,93930,94758,128519,661103,661876,729478,
%U 1009425,1095200,1096587,2187425,2269554,2311471,2430158,4542981,4864284,5143384,5422306
%N a(1) = 1; thereafter a(n) = a(n-1) + d_1^1 + d_2^2 + d_3^3 + ..., where d_1 d_2 d_3 ... is the decimal expansion of a(n-1).
%C This additive sequence will tend to be geometric.
%H Pieter Post, <a href="/A263535/b263535.txt">Table of n, a(n) for n = 1..100</a>
%e a(5)=16, so a(6) is 16 + 1^1 + 6^2 = 53.
%t NestList[#+Total[IntegerDigits[#]^Range[IntegerLength[#]]]&,1,40] (* _Harvey P. Dale_, Jan 19 2021 *)
%o (Python)
%o def moda(n):
%o return sum(int(d)**(i + 1) for i, d in enumerate(str(n)))
%o b = 1
%o resu = [1]
%o for a in range(1, 100):
%o b += moda(b)
%o resu.append(b)
%o resu
%o (Sage) A=[1]
%o for i in [1..2000]:
%o A.append(A[i-1]+sum(A[i-1].digits()[len(A[i-1].digits())-1-j]^(j+1) for j in [0..len(A[i-1].digits())-1]))
%o A # _Tom Edgar_, Oct 20 2015
%o (PARI) lista(nn) = {print1(a=1, ", "); for (n=2, nn, d = digits(a); na = a + sum(i=1, #d, d[i]^i); print1(na, ", "); a = na;);} \\ _Michel Marcus_, Nov 20 2015
%Y Cf. A007629, A005188.
%K nonn,base
%O 1,2
%A _Pieter Post_, Oct 20 2015