login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Binomial transform of double factorial n!! (A006882).
3

%I #27 Apr 12 2019 08:32:18

%S 1,2,5,13,37,111,355,1191,4201,15445,59171,234983,966397,4101709,

%T 17946783,80754331,373286481,1769440513,8592681907,42689422871,

%U 216789872741,1124107246669,5947013363479,32071798826115,176194545585529,985330955637801,5605802379087067

%N Binomial transform of double factorial n!! (A006882).

%H G. C. Greubel, <a href="/A263529/b263529.txt">Table of n, a(n) for n = 0..795</a>

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/DoubleFactorial.html">Double Factorial</a>.

%F a(n) = Sum_{k=0..n} k!!*binomial(n,k), where k!! = A006882(k).

%F Sum_{k=0..n} (-1)^(k+n)*a(k)*binomial(n,k) = n!!.

%F E.g.f.: exp(x) + exp((2*x+x^2)/2)*(2 + sqrt(2*Pi)*erf(x/sqrt(2)))*x/2.

%F Recurrence: (n+1)*a(n+2) = (n+2)*a(n+1) + (n+1)*(n+2)*a(n) - 1.

%F a(n) ~ (sqrt(2) + sqrt(Pi))/2 * n^(n/2 + 1/2) * exp(sqrt(n) - n/2 - 1/4). - _Vaclav Kotesovec_, Oct 20 2015

%F 0 = a(n)*(+a(n+1) - 2*a(n+2) - 2*a(n+3) + a(n+4)) + a(n+1)*(+3*a(n+2) + a(n+3) - a(n+4)) + a(n+2)*(-2*a(n+2) + a(n+3)) for all n>=0. - _Michael Somos_, Oct 20 2015

%F G.f.: Sum_{k>=0} k!!*x^k/(1 - x)^(k+1). - _Ilya Gutkovskiy_, Apr 12 2019

%e G.f. = 1 + 2*x + 5*x^2 + 13*x^3 + 37*x^4 + 111*x^5 + 355*x^6 + 1191*x^7 + ...

%t Table[Sum[k!!*Binomial[n, k], {k, 0, n}], {n, 0, 30}] (* _Vaclav Kotesovec_, Oct 20 2015 *)

%o (PARI) vector(50, n, n--; sum(k=0, n, prod(i=0, (k-1)\2, k - 2*i)*binomial(n,k))) \\ _Altug Alkan_, Oct 20 2015

%Y Cf. A006882, A262020.

%K nonn

%O 0,2

%A _Vladimir Reshetnikov_, Oct 19 2015