login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Binomial transform of Padovan sequence A000931.
23

%I #110 Feb 01 2024 12:10:01

%S 1,1,1,2,5,12,28,65,151,351,816,1897,4410,10252,23833,55405,128801,

%T 299426,696081,1618192,3761840,8745217,20330163,47261895,109870576,

%U 255418101,593775046,1380359512,3208946545

%N Binomial transform of Padovan sequence A000931.

%C Trisection of the Padovan sequence: a(n) = A000931(3n). - _Paul Barry_, Jul 06 2004

%C a(n+1) gives diagonal sums of Riordan array (1/(1-x),x/(1-x)^3). - _Paul Barry_, Oct 11 2005

%C a(n+2) is the sum, over all Boolean n-strings, of the product of the lengths of the runs of 1. For example, the Boolean 7-string (0,1,1,0,1,1,1) has two runs of 1s. Their lengths, 2 and 3, contribute a product of 6 to a(9). The 8 Boolean 3-strings contribute to a(5) as follows: 000 (empty product), 001, 010, 100, 101 all contribute 1, 011 and 110 contribute 2, 111 contributes 3. - _David Callan_, Nov 29 2007

%C [a(n), a(n+1), a(n+2)], n > 0, = [0,1,0; 0,0,1; 1,-2,3]^n * [1,1,1]. - _Gary W. Adamson_, Mar 27 2008

%C Without the initial 1 and 1: 1, 2, 5, 12, 28, this is also the transform of 1 by the T_{1,0} transformation; see Choulet link. - _Richard Choulet_, Apr 11 2009

%C Without the first 1: transform of 1 by T_{0,0} transformation (see Choulet link). - _Richard Choulet_, Apr 11 2009

%C Starting (1, 2, 5, 12, ...) = INVERT transform of (1, 1, 2, 3, 4, 5, ...) and row sums of triangle A159974. - _Gary W. Adamson_, Apr 28 2009

%C a(n+1) is also the number of 321-avoiding separable permutations. (A permutation is separable if it avoids both 2413 and 3142.) - Vince Vatter, Sep 21 2009

%C a(n+1) is an eigensequence of the sequence array for (1,1,2,3,4,5,...). - _Paul Barry_, Nov 03 2010

%C Equals the INVERTi transform of A055588: (1, 2, 4, 9, 22, 56, ...) - _Gary W. Adamson_, Apr 01 2011

%C The Ca3 sums, see A180662, of triangle A194005 equal the terms of this sequence without a(0) and a(1). - _Johannes W. Meijer_, Aug 16 2011

%C Without the initial 1, a(n) = row sums of A182097(n)*A007318(n,k); i.e., a Triangular array T(n,k) multiplying the binomial (Pascal's) triangle by the Padovan sequence where a(0) = 1, a(1) = 0 and a(2) = 1. - _Bob Selcoe_, Jun 28 2013

%C a(n+1) is the top left entry of the n-th power of any of the 3 X 3 matrices [1, 1, 1; 0, 1, 1; 1, 0, 1] or [1, 1, 0; 1, 1, 1; 1, 0, 1] or [1, 1, 1; 1, 1, 0; 0, 1, 1] or [1, 0, 1; 1, 1, 0; 1, 1, 1]. - _R. J. Mathar_, Feb 03 2014

%C a(n) is the top left entry of the n-th power of the 3 X 3 matrix [1, 0, 1; 1, 1, 1; 0, 1, 1] or of the 3 X 3 matrix [1, 1, 0; 0, 1, 1; 1, 1, 1]. - _R. J. Mathar_, Feb 03 2014

%C Number of sequences (e(1), ..., e(n-1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) != e(j) < e(k) and e(i) <= e(k). [Martinez and Savage, 2.8] - _Eric M. Schmidt_, Jul 17 2017

%C a(n+1) is the number of words of length n over the alphabet {0,1,2} that do not contain the substrings 01 or 12 and do not start with a 2 and do not end with a 0. - _Yiseth K. Rodríguez C._, Sep 11 2020

%H Vincenzo Librandi, <a href="/A034943/b034943.txt">Table of n, a(n) for n = 0..1000</a>

%H Miklos Bona and Rebecca Smith, <a href="https://arxiv.org/abs/1901.00026">Pattern avoidance in permutations and their squares</a>, arXiv:1901.00026 [math.CO], 2018. See H(z), Ex. 4.1.

%H Richard Choulet, <a href="http://www.apmep.fr/IMG/pdf/curtz1.pdf">Curtz like Transformation</a>

%H Michael Dairyko, Samantha Tyner, Lara Pudwell, and Casey Wynn, <a href="https://doi.org/10.37236/2099">Non-contiguous pattern avoidance in binary trees</a>, Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227. - From _N. J. A. Sloane_, Feb 01 2013

%H Stoyan Dimitrov, <a href="https://arxiv.org/abs/2103.04332">Sorting by shuffling methods and a queue</a>, arXiv:2103.04332 [math.CO], 2021.

%H Phan Thuan Do, Thi Thu Huong Tran, and Vincent Vajnovszki, <a href="https://arxiv.org/abs/1809.00742">Exhaustive generation for permutations avoiding a (colored) regular sets of patterns</a>, arXiv:1809.00742 [cs.DM], 2018.

%H Brian Hopkins and Hua Wang, <a href="https://arxiv.org/abs/2003.05291">Restricted Color n-color Compositions</a>, arXiv:2003.05291 [math.CO], 2020.

%H Jia Huang and Erkko Lehtonen, <a href="https://arxiv.org/abs/2401.15786">Associative-commutative spectra for some varieties of groupoids</a>, arXiv:2401.15786 [math.CO], 2024. See p. 18.

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=904">Encyclopedia of Combinatorial Structures 904</a>

%H H. Magnusson and H. Ulfarsson, <a href="http://arxiv.org/abs/1211.7110">Algorithms for discovering and proving theorems about permutation patterns</a>, arXiv preprint arXiv:1211.7110 [math.CO], 2012.

%H Megan A. Martinez and Carla D. Savage, <a href="https://arxiv.org/abs/1609.08106">Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations</a>, arXiv:1609.08106 [math.CO], 2016

%H Vincent Vatter, <a href="https://arxiv.org/abs/0911.2683">Finding regular insertion encodings for permutation classes</a>, arXiv:0911.2683 [math.CO], 2009.

%H Chunyan Yan and Zhicong Lin, <a href="https://arxiv.org/abs/1912.03674">Inversion sequences avoiding pairs of patterns</a>, arXiv:1912.03674 [math.CO], 2019.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,1).

%F a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3).

%F a(n) = Sum_{k=0..floor(n/2)} binomial(n+k-1, 3*k). - _Paul Barry_, Jul 06 2004

%F G.f.: (1 - 2*x)/(1 - 3*x + 2*x^2 - x^3). - _Paul Barry_, Jul 06 2005

%F G.f.: 1 + x / (1 - x / (1 - x / (1 - x / (1 + x / (1 - x))))). - _Michael Somos_, Mar 31 2012

%F a(-1 - n) = A185963(n). - _Michael Somos_, Mar 31 2012

%F a(n) = A095263(n) - 2*A095263(n-1). - _G. C. Greubel_, Apr 22 2023

%e G.f. = 1 + x + x^2 + 2*x^3 + 5*x^4 + 12*x^5 + 28*x^6 + 65*x^7 + 151*x^8 + ...

%p A034943 := proc(n): add(binomial(n+k-1, 3*k), k=0..floor(n/2)) end: seq(A034943(n), n=0..28); # _Johannes W. Meijer_, Aug 16 2011

%t LinearRecurrence[{3,-2,1},{1,1,1},30] (* _Harvey P. Dale_, Aug 11 2017 *)

%o (Magma) [n le 3 select 1 else 3*Self(n-1)-2*Self(n-2)+Self(n-3): n in [1..40]]; // _Vincenzo Librandi_, Feb 14 2012

%o (PARI) {a(n) = if( n<1, n = 0-n; polcoeff( (1 - x + x^2) / (1 - 2*x + 3*x^2 - x^3) + x * O(x^n), n), n = n-1; polcoeff( (1 - x + x^2) / (1 - 3*x + 2*x^2 - x^3) + x * O(x^n), n))} /* _Michael Somos_, Mar 31 2012 */

%o (SageMath)

%o @CachedFunction

%o def a(n): # a = A034943

%o if (n<3): return 1

%o else: return 3*a(n-1) - 2*a(n-2) + a(n-3)

%o [a(n) for n in range(51)] # _G. C. Greubel_, Apr 22 2023

%Y First differences of A052921.

%Y Cf. A000931, A007318, A055588, A095263, A097550.

%Y Cf. A137531, A159974, A182097, A185963, A194005.

%K nonn,easy

%O 0,4

%A _N. J. A. Sloane_

%E Edited by _Charles R Greathouse IV_, Apr 20 2010