OFFSET
2,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 2..1000
M. Bousquet-Mélou and A. Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31 (2003), 86-112.
Emeric Deutsch, S Elizalde, Statistics on bargraphs viewed as cornerless Motzkin paths, arXiv preprint arXiv:1609.00088, 2016
FORMULA
G.f.: g(z)=(1-z)*(1-3z+z^2-z^3-(1-z)Q)/(2z^2), where Q = sqrt((1-z)(1-3z-z^2-z^3)).
a(n) = Sum(k*A273899(n,k), k>=1).
D-finite with recurrence (n+2)*a(n) -4*n*a(n-1) +2*(n-4)*a(n-2) -2*a(n-3) +(n-6)*a(n-4)=0. - R. J. Mathar, Jul 24 2022
EXAMPLE
a(4) = 5 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] and the corresponding pictures give the values 3, 1, 1, 0, 0 for the number of columns of length 1.
MAPLE
g:=(1/2)*(1-z)*(1-3*z+z^2-z^3-(1-z)*Q)/z^2: Q:=sqrt((1-z)*(1-3*z-z^2-z^3)): gser:= series(g, z=0, 40): seq(coeff(gser, z, n), n=2..35);
# second Maple program:
a:= proc(n) option remember; `if`(n<5, [0, 1, 2, 5][n], (
4*n*a(n-1)-2*(n-4)*a(n-2)+2*a(n-3)-(n-6)*a(n-4))/(n+2))
end:
seq(a(n), n=2..35); # Alois P. Heinz, Jun 07 2016
MATHEMATICA
a[n_] := a[n] = If[n<5, {0, 1, 2, 5}[[n]], (4*n*a[n-1] - 2*(n-4)*a[n-2] + 2*a[n-3] - (n-6)*a[n-4])/(n+2)]; Table[a[n], {n, 2, 35}] (* Jean-François Alcover, Dec 02 2016 after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jun 07 2016
STATUS
approved