login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273898
Sum of the abscissae of the first descents of all bargraphs of semiperimeter n (n>=2).
2
1, 3, 9, 27, 81, 244, 739, 2251, 6895, 21232, 65703, 204245, 637573, 1997892, 6282635, 19820580, 62716923, 198997349, 633015543, 2018391204, 6449819095, 20652628601, 66256638509, 212939343591, 685497649231, 2210217592624, 7136781993563, 23076554161563
OFFSET
2,2
COMMENTS
A descent in a bargraph is a maximal sequence of adjacent down steps.
LINKS
M. Bousquet-Mélou and A. Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31 (2003), 86-112.
Emeric Deutsch, S Elizalde, Statistics on bargraphs viewed as cornerless Motzkin paths, arXiv preprint arXiv:1609.00088, 2016
FORMULA
G.f.: g(z)=(1-4z+3z^2-(1-2z)Q)/(2z^3), where Q = sqrt(1-4z+2z^2+z^4).
a(n) = Sum(k*A273897(n,k), k>=1).
a(n) = A082582(n+2)-2*A082582(n+1).
D-finite with recurrence (n+3)*a(n) +2*(-3*n-4)*a(n-1) +2*(5*n-2)*a(n-2) +4*(-n+2)*a(n-3) +(n-3)*a(n-4) +2*(-n+5)*a(n-5)=0. - R. J. Mathar, Jul 24 2022
EXAMPLE
a(4)=9 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1],[1,2],[2,1],[2,2],[3] and the corresponding pictures give the values 3,2,1,2,1 for the abscissae of their first descents.
MAPLE
g := ((1-4*z+3*z^2-(1-2*z)*Q)*(1/2))/z^3: Q := sqrt(1-4*z+2*z^2+z^4): gser := series(g, z = 0, 40): seq(coeff(gser, z, n), n = 2 .. 35);
# second Maple program:
a:= proc(n) option remember; `if`(n<4, [0$2, 1, 3][n+1],
((2*(14*n^2+6+13*n))*a(n-1)-(2*(7*n^2-6-4*n))*a(n-2)
+12*a(n-3) -(n-4)*(3+7*n)*a(n-4))/((n+3)*(7*n-4)))
end:
seq(a(n), n=2..40); # Alois P. Heinz, Jun 07 2016
MATHEMATICA
a[n_] := a[n] = If[n<4, {0, 0, 1, 3}[[n+1]], ((2*(14*n^2+6+13*n))*a[n-1] - (2*(7*n^2-6-4*n))*a[n-2] + 12*a[n-3] - (n-4)*(3+7*n)*a[n-4])/((n+3)*(7*n - 4))]; Table[a[n], {n, 2, 40}] (* Jean-François Alcover, Dec 02 2016 after Alois P. Heinz *)
CROSSREFS
Sequence in context: A351344 A079846 A067500 * A351343 A078226 A083591
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jun 06 2016
STATUS
approved