login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273895
T(n, k) is the number of Horizontal Convex Polyominoes with n cells and k rows.
2
0, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 9, 8, 1, 0, 1, 16, 31, 12, 1, 0, 1, 25, 85, 68, 16, 1, 0, 1, 36, 190, 260, 121, 20, 1, 0, 1, 49, 371, 777, 604, 190, 24, 1, 0, 1, 64, 658, 1960, 2299, 1180, 275, 28, 1, 0, 1, 81, 1086, 4368, 7221, 5509, 2052, 376, 32, 1, 0
OFFSET
0,9
LINKS
R. Pemantle and M. C. Wilson, Twenty Combinatorial Examples of Asymptotics Derived from Multivariate Generating Functions, SIAM Rev., 50 (2008), no. 2, 199-272. See p. 239
FORMULA
G.f.: x * y * (1 - x)^3 / ((1 - x)^4 - x * y * (1 - x - x^2 + x^3 + x^2 * y)) = Sum_{0<=k<=n} T(n, k) * x^n * y^k.
Row sums are A001169.
T(n,m) = Sum_{k=0..n-1} Sum_{i=0..n-k-1} [Sum_{j=0..m+i-1} C(i-2*j,j)*2^(i-3*j)*C(k+j,i-2*j)*C(k+3*j-i,m+j-i-1)]*C(n-k-2,n-k-i-1). - Vladimir Kruchinin, Jan 27 2019
EXAMPLE
Triangle begins:
0,
0, 1,
0, 1, 1,
0, 1, 4, 1,
0, 1, 9, 8, 1,
MATHEMATICA
T[n_, m_] := Sum[Sum[Sum[Binomial[i - 2*j, j]*2^(i - 3*j)*Binomial[k + j, i - 2*j]*Binomial[k + 3*j - i, m + j - i - 1], {j, 0, m + i - 1}]*Binomial[ n - k - 2, n - k - i - 1], {i, 0, n - k - 1}], {k, 0, n - 1}]; Table[T[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jan 27 2019, after Vladimir Kruchinin *)
PROG
(PARI) {T(n, k) = if( k<0 || k>n, 0, polcoeff( polcoeff( x * y *(1 - x)^3 / ((1 - x)^4 - x * y * (1 - x - x^2 + x^3 + x^2 * y)) + x * O(x^n), n), k))};
(Maxima)
T(n, m):=sum(sum((sum(binomial(i-2*j, j)*2^(i-3*j)*binomial(k+j, i-2*j)*binomial(k+3*j-i, m+j-i-1), j, 0, m+i-1))*binomial(n-k-2, n-k-i-1), i, 0, n-k-1), k, 0, n-1); /* Vladimir Kruchinin, Jan 27 2019 */
CROSSREFS
Cf. A001169.
Sequence in context: A278986 A292159 A099793 * A376722 A363044 A086329
KEYWORD
nonn
AUTHOR
Michael Somos, Jun 02 2016
STATUS
approved