The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A086329 Triangle T(n,k) read by rows, given by [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, ...] where DELTA is the operator defined in A084938. 4
 1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 9, 11, 1, 0, 1, 16, 48, 26, 1, 0, 1, 25, 140, 202, 57, 1, 0, 1, 36, 325, 916, 747, 120, 1, 0, 1, 49, 651, 3045, 5071, 2559, 247, 1, 0, 1, 64, 1176, 8260, 23480, 25300, 8362, 502, 1, 0, 1, 81, 1968, 19404, 84456, 159736, 117962, 26520, 1013, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS See A087903 for another version (transposed). - Philippe Deléham, Jun 13 2004 LINKS G. C. Greubel, Rows n = 0..50 of the triangle, flattened FORMULA Sum_{k=0..n} T(n, k) = A086211(n, 0). T(n, 1) = 1, n > 0. T(n, 2) = (n-1)^2, n > 0. T(k+1, k) = 2^(k+1) - k - 2 = A000295(k+1). Sum_{k=0..n} T(n, k) = A074664(n+1). - Philippe Deléham, Jun 13 2004 Sum_{k=0..n} T(n,k)*2^k = A171151(n). - Philippe Deléham, Dec 05 2009 T(n, k) = A087903(n, n-k+1). - G. C. Greubel, Jun 21 2022 EXAMPLE Triangle begins: 1; 0, 1; 0, 1, 1; 0, 1, 4, 1; 0, 1, 9, 11, 1; 0, 1, 16, 48, 26, 1; 0, 1, 25, 140, 202, 57, 1; 0, 1, 36, 325, 916, 747, 120, 1; 0, 1, 49, 651, 3045, 5071, 2559, 247, 1; 0, 1, 64, 1176, 8260, 23480, 25300, 8362, 502, 1; ... MATHEMATICA T[n_, k_]:= T[n, k]= If[n==0, 1, StirlingS2[n, k] + Sum[(k-m-1)*T[n-j-1, k- m]*StirlingS2[j, m], {m, 0, k-1}, {j, 0, n-2}]]; A086329[n_, k_]:= T[n, n-k+1]; Table[A086329[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 21 2022 *) PROG (SageMath) @CachedFunction def T(n, k): # T=A087903 if (n==0): return 1 else: return stirling_number2(n, k) + sum( sum( (k-m-1)*T(n-j-1, k-m)*stirling_number2(j, m) for m in (0..k-1) ) for j in (0..n-2) ) def A086329(n, k): return T(n, n-k+1) flatten([[A086329(n, k) for k in (0..n)] for n in (0..14)]) # G. C. Greubel, Jun 21 2022 CROSSREFS Cf. A000290, A000295, A074664, A084938, A086211, A171151. Sequence in context: A292159 A099793 A273895 * A294118 A343648 A318996 Adjacent sequences: A086326 A086327 A086328 * A086330 A086331 A086332 KEYWORD easy,nonn,tabl AUTHOR Philippe Deléham, Aug 30 2003, Jun 12 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 06:16 EST 2022. Contains 358649 sequences. (Running on oeis4.)