login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086330
a(n) = Sum_{m >= 2} m! mod n.
3
0, 2, 4, 7, 2, 18, 8, 17, 12, 43, 8, 73, 32, 17, 24, 113, 26, 159, 12, 32, 76, 203, 8, 112, 164, 89, 60, 334, 32, 496, 88, 164, 232, 67, 44, 706, 292, 164, 32, 863, 74, 874, 164, 62, 456, 1097, 56, 291, 162, 317, 268, 1124, 116, 142, 88, 425, 566, 1560, 32, 2033, 930
OFFSET
2,2
COMMENTS
A discrete infinite sum that has some rough analogies to the infinite series for exponentials.
FORMULA
a(n) = -1 + Sum_{k=1..n} A062169(n, k). - Vladeta Jovovic, Sep 06 2003
EXAMPLE
a(7) = 2! mod 7 + 3! mod 7 + 4! mod 7 + 5! mod 7 + 6! mod 7 + 7! mod 7 + 8! mod 7 + . . . = 2 mod 7 + 6 mod 7 + 24 mod 7 + 120 mod 7 + 720 mod 7 + 5040 mod 7 + 40320 mod 7 + ... = 2 + 6 + 3 + 1 + 6 + (all further values are zero) = 18.
PROG
(PARI) a(n) = sum(m=2, n, m! % n) \\ Michel Marcus, Jul 23 2013
(Python)
def A086330(n):
a, c = 0, 1
for m in range(2, n):
c = c*m%n
if c==0:
break
a += c
return a # Chai Wah Wu, Apr 16 2024
CROSSREFS
Cf. A062169.
Sequence in context: A166531 A133292 A126218 * A098283 A373786 A359005
KEYWORD
easy,nonn
AUTHOR
Walter Carlini, Aug 31 2003
EXTENSIONS
Corrected and extended by Vladeta Jovovic, Sep 06 2003
STATUS
approved