login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{m >= 2} m! mod n.
3

%I #22 Apr 16 2024 16:52:55

%S 0,2,4,7,2,18,8,17,12,43,8,73,32,17,24,113,26,159,12,32,76,203,8,112,

%T 164,89,60,334,32,496,88,164,232,67,44,706,292,164,32,863,74,874,164,

%U 62,456,1097,56,291,162,317,268,1124,116,142,88,425,566,1560,32,2033,930

%N a(n) = Sum_{m >= 2} m! mod n.

%C A discrete infinite sum that has some rough analogies to the infinite series for exponentials.

%F a(n) = -1 + Sum_{k=1..n} A062169(n, k). - _Vladeta Jovovic_, Sep 06 2003

%e a(7) = 2! mod 7 + 3! mod 7 + 4! mod 7 + 5! mod 7 + 6! mod 7 + 7! mod 7 + 8! mod 7 + . . . = 2 mod 7 + 6 mod 7 + 24 mod 7 + 120 mod 7 + 720 mod 7 + 5040 mod 7 + 40320 mod 7 + ... = 2 + 6 + 3 + 1 + 6 + (all further values are zero) = 18.

%o (PARI) a(n) = sum(m=2, n, m! % n) \\ _Michel Marcus_, Jul 23 2013

%o (Python)

%o def A086330(n):

%o a, c = 0, 1

%o for m in range(2,n):

%o c = c*m%n

%o if c==0:

%o break

%o a += c

%o return a # _Chai Wah Wu_, Apr 16 2024

%Y Cf. A062169.

%K easy,nonn

%O 2,2

%A _Walter Carlini_, Aug 31 2003

%E Corrected and extended by _Vladeta Jovovic_, Sep 06 2003