login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n, k) is the number of Horizontal Convex Polyominoes with n cells and k rows.
2

%I #13 Jan 27 2019 04:45:12

%S 0,0,1,0,1,1,0,1,4,1,0,1,9,8,1,0,1,16,31,12,1,0,1,25,85,68,16,1,0,1,

%T 36,190,260,121,20,1,0,1,49,371,777,604,190,24,1,0,1,64,658,1960,2299,

%U 1180,275,28,1,0,1,81,1086,4368,7221,5509,2052,376,32,1,0

%N T(n, k) is the number of Horizontal Convex Polyominoes with n cells and k rows.

%H R. Pemantle and M. C. Wilson, <a href="http://dx.doi.org/10.1137/050643866">Twenty Combinatorial Examples of Asymptotics Derived from Multivariate Generating Functions</a>, SIAM Rev., 50 (2008), no. 2, 199-272. See p. 239

%F G.f.: x * y * (1 - x)^3 / ((1 - x)^4 - x * y * (1 - x - x^2 + x^3 + x^2 * y)) = Sum_{0<=k<=n} T(n, k) * x^n * y^k.

%F Row sums are A001169.

%F T(n,m) = Sum_{k=0..n-1} Sum_{i=0..n-k-1} [Sum_{j=0..m+i-1} C(i-2*j,j)*2^(i-3*j)*C(k+j,i-2*j)*C(k+3*j-i,m+j-i-1)]*C(n-k-2,n-k-i-1). - _Vladimir Kruchinin_, Jan 27 2019

%e Triangle begins:

%e 0,

%e 0, 1,

%e 0, 1, 1,

%e 0, 1, 4, 1,

%e 0, 1, 9, 8, 1,

%t T[n_, m_] := Sum[Sum[Sum[Binomial[i - 2*j, j]*2^(i - 3*j)*Binomial[k + j, i - 2*j]*Binomial[k + 3*j - i, m + j - i - 1], {j, 0, m + i - 1}]*Binomial[ n - k - 2, n - k - i - 1], {i, 0, n - k - 1}], {k, 0, n - 1}]; Table[T[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* _Jean-François Alcover_, Jan 27 2019, after _Vladimir Kruchinin_ *)

%o (PARI) {T(n, k) = if( k<0 || k>n, 0, polcoeff( polcoeff( x * y *(1 - x)^3 / ((1 - x)^4 - x * y * (1 - x - x^2 + x^3 + x^2 * y)) + x * O(x^n), n), k))};

%o (Maxima)

%o T(n,m):=sum(sum((sum(binomial(i-2*j,j)*2^(i-3*j)*binomial(k+j,i-2*j)*binomial(k+3*j-i,m+j-i-1),j,0,m+i-1))*binomial(n-k-2,n-k-i-1),i,0,n-k-1),k,0,n-1); /* _Vladimir Kruchinin_, Jan 27 2019 */

%Y Cf. A001169.

%K nonn

%O 0,9

%A _Michael Somos_, Jun 02 2016