OFFSET
1,2
COMMENTS
For positive terms, a number is a term iff the first digit is even. Therefore, for k > 0, there are 4 * 10^(k - 1) terms having precisely k digits. - David A. Corneth, Jun 02 2016
LINKS
Bruno Berselli, Table of n, a(n) for n = 1..1000
EXAMPLE
21 is a term because 2 is an even number. - Altug Alkan, Jun 02 2016
MATHEMATICA
Select[Range[0, 219], EvenQ@ FromDigits@ Reverse@ IntegerDigits@ # &] (* or *) {0} ~ Join ~ Select[Range@ 219, EvenQ@ Floor[#/10^Floor@ Log10@ #] &] (* Michael De Vlieger, Jun 03 2016 *)
PROG
(PARI) A004086(n) = eval(concat(Vecrev(Str(n)))); lista(nn) = for(n=0, nn, if(A004086(n) % 2 == 0, print1(n, ", "))); \\ Altug Alkan, Jun 02 2016
(PARI) a(n)=if(n==1, return(0), n--; k = logint(9*n\4, 10)); n -= 4 * ((10^k - 1) / 9); n--; 2 * (n \ 10^k + 1)*10^k+n%10^k
is(n) = n==0||digits(n)[1]%2==0 \\ David A. Corneth, Jun 02 2016
(Magma) [0] cat [n: n in [1..220] | IsEven(Intseq(n)[#Intseq(n)])]; // Bruno Berselli, Jun 15 2016
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Giovanni Teofilatto, Jun 02 2016
STATUS
approved