login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273890
Integer area A of the cyclic quadrilaterals such that A, the sides and the two diagonals are integers.
3
192, 234, 300, 432, 714, 768, 936, 1134, 1200, 1254, 1344, 1674, 1728, 1764, 1890, 1938, 2046, 2106, 2226, 2310, 2352, 2700, 2856, 2886, 3072, 3120, 3234, 3744, 3888, 3990, 4092, 4212, 4368, 4536, 4674, 4800, 4914, 5016, 5292, 5376, 5760, 5850, 6006, 6270, 6426
OFFSET
1,1
COMMENTS
The areas of the primitive cyclic quadrilaterals of this sequence are in A273691.
This sequence contains A233315 (768, 936, 1200,...).
In Euclidean geometry, a cyclic quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed, and the vertices are said to be concyclic.
The area A of a cyclic quadrilateral with sides a, b, c, d is given by Brahmagupta’s formula : A = sqrt((s - a)(s -b)(s - c)(s - d)) where s, the semiperimeter is s= (a+b+c+d)/2.
In a cyclic quadrilateral with successive vertices A, B, C, D and sides a = AB, b = BC, c = CD, and d = DA, the lengths of the diagonals p = AC and q = BD can be expressed in terms of the sides as
p = sqrt((ac+bd)(ad+bc)/(ab+cd)) and q = sqrt((ac+bd)(ab+cd)/(ad+bc)).
The circumradius R (the radius of the circumcircle) is given by :
R = sqrt((ab+cd)(ac+bd)(ad+bc))/4A.
The corresponding sides of a(n) are not unique, for example for a(6) = 768 => (a,b,c,d) = (25, 25, 25, 39) or (a,b,c,d) = (14, 30, 30, 50).
The following table gives the first values (A, a, b, c, d, p, q, R) where A is the integer area, a, b, c, d are the integer sides of the cyclic quadrilateral, p, q are the integer diagonals, and R .
+--------+-------+-------+-------+--------+-------+------+-------+
| A | a | b | c | d | p | q | R |
+--------+-------+-------+-------+--------+-------+------+-------+
| 192 | 7 | 15 | 15 | 25 | 20 | 24 | 25/2 |
| 234 | 7 | 15 | 20 | 24 | 20 | 25 | 25/2 |
| 300 | 15 | 15 | 20 | 20 | 24 | 25 | 25/2 |
| 432 | 11 | 25 | 25 | 25 | 30 | 30 | 125/8 |
| 714 | 16 | 25 | 33 | 60 | 39 | 52 | 65/2 |
| 768 | 25 | 25 | 25 | 39 | 40 | 40 | 125/6 |
| 768 | 14 | 30 | 30 | 50 | 40 | 48 | 25 |
| 936 | 14 | 30 | 40 | 48 | 40 | 50 | 25 |
| 1134 | 16 | 25 | 52 | 65 | 39 | 63 | 65/2 |
| 1200 | 30 | 30 | 40 | 40 | 48 | 50 | 25 |
| 1254 | 16 | 25 | 60 | 63 | 39 | 65 | 65/2 |
| 1344 | 25 | 33 | 39 | 65 | 52 | 60 | 65/2 |
..................................................................
LINKS
Eric Weisstein's World of Mathematics, Cyclic Quadrilateral
EXAMPLE
192 is in the sequence because, for (a,b,c,d) = (7,15,15,25) we find:
s = (7+15+15+25)/2 = 31;
A = sqrt((31-7)(31-15)(31-15)(31-25)) = 192;
p = sqrt((7*15+15*25)*(7*25+15*15)/(7*15+15*25)) = 20;
q = sqrt((7*15+15*25)*(7*15+15*25)/(7*25+15*15)) = 24.
MATHEMATICA
nn=200; lst={}; Do[s=(a+b+c+d)/2; If[IntegerQ[s], area2=(s-a)*(s-b)*(s-c)*(s-d); d1=Sqrt[(a*c+b*d)*(a*d+b*c)/(a*b+c*d)]; d2=Sqrt[(a*c+b*d)*(a*b+c*d)/(a*d+b*c)]; If[0<area2 && IntegerQ[Sqrt[area2]] && IntegerQ[d1]&& IntegerQ[d2], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}, {d, c}]; Union[lst]
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jun 02 2016
STATUS
approved