login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205570
E.g.f.: 1/sqrt(1+x^2 - 2*x*cosh(x)).
2
1, 1, 2, 9, 60, 485, 4680, 53557, 709968, 10662633, 178786080, 3312164801, 67201649856, 1481949570829, 35291569832064, 902631317654445, 24676916031310080, 718135040275928657, 22164641043514532352, 723163494821506484473, 24869366907327781002240
OFFSET
0,3
COMMENTS
Radius of convergence of e.g.f. is |x| < r where r = LambertW(1) = exp(-LambertW(1)) = 0.56714329040978...
LINKS
FORMULA
a(2*n-1) == 1 (mod 4), a(2*n+2) == 0 (mod 4), for n>=1.
a(n) ~ n! * exp(c*n)/(sqrt(Pi*n)*(1+c)*sqrt(1-c)), where c = LambertW(1) = 0.5671432904... - Vaclav Kotesovec, Jun 26 2013
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 60*x^4/4! + 485*x^5/5! +...
MATHEMATICA
CoefficientList[Series[1/Sqrt[1+x^2-2*x*Cosh[x]], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 26 2013 *)
PROG
(PARI) {a(n)=n!*polcoeff(1/sqrt(1+x^2-2*x*cosh(x +x*O(x^n))), n)}
CROSSREFS
Cf. A205569.
Sequence in context: A156272 A366240 A363390 * A116364 A354314 A354496
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 28 2012
STATUS
approved