login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: 1/sqrt(1+x^2 - 2*x*cosh(x)).
2

%I #11 Jul 18 2013 10:51:03

%S 1,1,2,9,60,485,4680,53557,709968,10662633,178786080,3312164801,

%T 67201649856,1481949570829,35291569832064,902631317654445,

%U 24676916031310080,718135040275928657,22164641043514532352,723163494821506484473,24869366907327781002240

%N E.g.f.: 1/sqrt(1+x^2 - 2*x*cosh(x)).

%C Radius of convergence of e.g.f. is |x| < r where r = LambertW(1) = exp(-LambertW(1)) = 0.56714329040978...

%H Vincenzo Librandi, <a href="/A205570/b205570.txt">Table of n, a(n) for n = 0..200</a>

%F a(2*n-1) == 1 (mod 4), a(2*n+2) == 0 (mod 4), for n>=1.

%F a(n) ~ n! * exp(c*n)/(sqrt(Pi*n)*(1+c)*sqrt(1-c)), where c = LambertW(1) = 0.5671432904... - _Vaclav Kotesovec_, Jun 26 2013

%e E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 60*x^4/4! + 485*x^5/5! +...

%t CoefficientList[Series[1/Sqrt[1+x^2-2*x*Cosh[x]], {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Jun 26 2013 *)

%o (PARI) {a(n)=n!*polcoeff(1/sqrt(1+x^2-2*x*cosh(x +x*O(x^n))),n)}

%Y Cf. A205569.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jan 28 2012