login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116363
a(n) = dot product of row n in Catalan triangle A033184 with row n in Pascal's triangle.
2
1, 2, 7, 30, 141, 698, 3571, 18686, 99385, 535122, 2908863, 15932766, 87809541, 486421770, 2706138987, 15110359038, 84637982961, 475381503266, 2676447372535, 15100548901790, 85357620588541, 483304834607322
OFFSET
0,2
LINKS
D. Drake, Bijections from Weighted Dyck Paths to Schröder Paths, J. Int. Seq. 13 (2010) # 10.9.2.
FORMULA
a(n) = Sum_{k=0..n} C(n,k)*C(2*n-k+1,n-k)*(k+1)/(2*n-k+1).
G.f. A(x) satisfies: d/dx[log(1 - 4*x*A(x))] = -4*(1-5*x)/(1-13*x+43*x^2-7*x^3).
O.g.f.: 2*(R+x)/(R*(R+x+1)), where R = sqrt(x^2+6*x+1). [Dan Drake, May 19 2010]
Conjecture: +(2*n+5)*(n+1)*a(n) +4*(-3*n^2-9*n+5)*a(n-1) +(2*n+7)*(n-1)*a(n-2)=0. - R. J. Mathar, Jun 22 2016
EXAMPLE
The dot product of Catalan row 4 and Pascal row 4 equals
a(4) = [14,14,9,4,1]*[1,4,6,4,1] = 141
which is equivalent to obtaining the final term
in these repeated partial sums of Pascal row 4:
1,4, 6, 4, 1
.5,11,15,16
..16,31,47
...47,94
....141
MATHEMATICA
Table[Sum[Binomial[n, j]*Binomial[2*n-j+1, n-j]*(j+1)/(2*n-j+1), {j, 0, n} ], {n, 0, 30}] (* G. C. Greubel, May 12 2019 *)
PROG
(PARI) a(n)=sum(k=0, n, binomial(n, k)*binomial(2*n-k+1, n-k)*(k+1)/(2*n-k+1))
for(n=0, 30, print1(a(n), ", "))
(Magma) [(&+[Binomial(n, j)*Binomial(2*n-j+1, n-j)*(j+1)/(2*n-j+1): j in [0..n]]): n in [0..30]]; // G. C. Greubel, May 12 2019
(Sage) [sum(binomial(n, j)*binomial(2*n-j+1, n-j)*(j+1)/(2*n-j+1) for j in (0..n)) for n in (0..30)] # G. C. Greubel, May 12 2019
(GAP) List([0..30], n-> Sum([0..n], j-> Binomial(n, j)*Binomial(2*n-j+1, n-j)*(j+1)/(2*n-j+1))) # G. C. Greubel, May 12 2019
CROSSREFS
Cf. A033184.
Sequence in context: A027136 A353288 A299296 * A186858 A360102 A369441
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2006
STATUS
approved