login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186858
G.f. A(x) satisfies A(x) = x*(A(x)^5 + 3*A(x)^4 + 4*A(x)^3 + 3*A(x)^2 + 2*A(x) + 1).
1
0, 1, 2, 7, 30, 141, 703, 3653, 19567, 107270, 598955, 3394374, 19474061, 112884523, 660133281, 3889762894, 23071999207, 137648379106, 825454689096, 4972910455246, 30082871471563, 182660631479932, 1112852638627219, 6800915421684405, 41679320208737561, 256093061045766088
OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1233 (terms n = 1..200 from Vincenzo Librandi)
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
a(n) = sum(k=0..n-1, binomial(k+n,n-k-1)*sum(j=0..n, binomial(n,j)*binomial(j,k-2*n+2*j)))/n, n>0.
MAPLE
a:= n-> coeff(series(RootOf(x*(((((A+3)*A+4)*
A+3)*A+2)*A+1)-A, A), x, n+1), x, n):
seq(a(n), n=0..25); # Alois P. Heinz, Jul 22 2018
MATHEMATICA
terms = 25;
A[_] = 1; Do[A[x_] = x*(A[x]^5 + 3A[x]^4 + 4A[x]^3 + 3A[x]^2 + 2A[x] + 1) + O[x]^(terms+1), {terms+1}];
CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Jul 22 2018 *)
PROG
(PARI)
a(n)=sum(k=0, n, binomial(k+n+1, n-k)*sum(j=0, n+1, binomial(n+1, j)*binomial(j, k-2*n-2+2*j)))/(n+1);
vector(33, n, a(n-1)) /* show terms, Joerg Arndt, Mar 04 2011 */
(Magma) [&+[Binomial(k+n, n-k-1)*(Binomial(n, i)*Binomial(i, k-2*n+2*i))/n: k in [0..25], i in [0..n]]: n in [1..25]]; // Vincenzo Librandi, Jul 23 2018
CROSSREFS
Sequence in context: A353288 A299296 A116363 * A360102 A369441 A371432
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Feb 28 2011
EXTENSIONS
a(0)=0 prepended by Alois P. Heinz, Jul 23 2018
STATUS
approved