login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186859
E.g.f. A(x)=exp(x^6+3*x^5+4*x^4+3*x^3+2*x^2+x).
1
1, 1, 5, 31, 241, 2021, 19741, 224155, 2816801, 38127241, 557512021, 8805585911, 148896471505, 2668912291501, 50505733789421, 1007422798667251, 21118304040298561, 463416656527980305, 10612758078821689381, 253157568544420465231, 6279192326923499850161
OFFSET
0,3
LINKS
Kruchinin Vladimir Victorovich, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
FORMULA
a(n) = n!*Sum(m=1..n, Sum(k=m..n, binomial(k,n-k)*Sum(j=0..m, binomial(m,j)*binomial(j,k-3*m+2*j)))/m!).
From Benedict W. J. Irwin, Jun 02 2016: (Start)
Let y(0)=1, y(1)=1, y(2)=5/2, y(3)=31/6, y(4)=241/24, y(5)=2021/120,
Let -6*y(n)-15*y(n+1)-16*y(n+2)-9*y(n+3)-4*y(n+4)-y(n+5)+(n+6)y(n+6)=0,
a(n) = n!y(n).
(End)
EXAMPLE
G.f. = 1 + x + 5*x^2 + 31*x^3 + 241*x^4 + 2021*x^5 + 19741*x^6 + 224155*x^7 + ...
MATHEMATICA
With[{nn=20}, CoefficientList[Series[E^(x^6+3x^5+4x^4+3x^3+2x^2+x), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Jan 26 2014 *)
PROG
(PARI) {a(n) = if( n<0, 0, n! * polcoeff( exp(x^6 + 3*x^5 + 4*x^4 + 3*x^3 + 2*x^2 + x + x * O(x^n)), n))}; /* Michael Somos, Jun 04 2016 */
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x^6+3*x^5+4*x^4+3*x^3+2*x^2+x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 14 2018
CROSSREFS
Sequence in context: A211179 A177797 A293717 * A331335 A082579 A294214
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Feb 28 2011
EXTENSIONS
More terms from Harvey P. Dale, Jan 26 2014
STATUS
approved