The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A177797 Number of decomposable fixed-point free involutions, also the number of disconnected chord diagrams with 2n nodes on an open string. 2
 0, 0, 1, 5, 31, 239, 2233, 24725, 318631, 4707359, 78691633, 1471482725, 30469552111, 692488851599, 17141242421353, 459033875802485, 13221994489388791, 407574126219013439, 13386292717807416673, 466636446695213384645, 17205919477720642772671, 669019022588385113932079, 27357684052927560953626393 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Line up 2n distinguishable nodes sequentially on an open string. Connect each two nodes with only one chord, there will be a (2n-1)!! variety of chord diagrams. Amongst this variety, we can classify a diagram as disconnected when it is possible to find a node index 2s with all nodes <=2s in group A and the rest in group B where none of the chords connect nodes between group A and B. The subsequence of primes begins 5, 31, 239, 4707359, 78691633, 17141242421353, no more through a(22). - Jonathan Vos Post, Jan 31 2011 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..200 A. King, Generating indecomposable permutations, Discrete Math., 306 (2006), 508-518. F. Kuehnel, L. P. Pryadko, M. I. Dykman, Single-electron magnetoconductivity of nondegenerate two-dimensional electron system in a quantizing magnetic field, Phys. Rev. B Vol. 63, 16 (2001). Frank Kuehnel, Leonid P. Pryadko and M. I. Dykman, Single electron magneto-conductivity of a nondegenerate 2D electron system in a quantizing magnetic field (See diagrams on page 6), arXiv:cond-mat/0008416 [cond-mat.str-el], 2000. MATHEMATICA (* derived from Joerg Arndt's PARI code *) f[n_] := f[n] = (2n-1)!! s[n_] := s[n] = f[n] - Sum[f[k] s[n - k], {k, 1, n - 1}] Table[f[k] - s[k], {k, 0, 22}] (* original brute force method *) GenerateDiagramsOfOrder[n_Integer /; n >= 0] := Diagrams[Range[2 n]] Diagrams[pool_List] := Block[{n = Count[pool, _]}, If[n <= 2, {{pool}}, Flatten[Map[ Flatten[ Outer[Join, {{{pool[[1]], pool[[#]]}}}, Diagrams[ Function[{poolset, droppos}, Drop[poolset, {droppos}] // Rest][pool, #]], 1], 1] &, Range[2, n]], 1]]] SelectDisconnected[diagrams_List] := Select[diagrams, IsDisconnected] IsDisconnected[{{}}] = False; IsDisconnected[pairs_List] := Block[{newPairs=Map[#~Append~(#[[2]] - #[[1]]) &, pairs], distanceList}, distanceList = Fold[ ReplacePart[#1, {#2[[1]] -> #2[[3]], #2[[2]] -> -#2[[3]]}] &, Range[2 Length[pairs]], newPairs]; Return[Length[Select[Drop[Accumulate[distanceList], -1], #<1 &]] > 0] ] Map[Length[SelectDisconnected[GenerateDiagramsOfOrder[#]]]&, Range[0, 7]] PROG (PARI) f(n)=(2*n)!/n!/2^n; \\ == (2n-1)!! s(n)=f(n) - sum(k=1, n-1, f(k)*s(n-k) ) a(n)=f(n)-s(n) \\ Joerg Arndt (Python) from functools import cache def a(n): @cache def h(n): if n <= 1: return 1 return h(n - 1) * (2 * n - 1) @cache def c(n): if n == 0: return 1 return h(n) - sum(h(k) * c(n - k) for k in range(1, n)) return h(n) - c(n) print([a(n) for n in range(19)]) # Peter Luschny, Apr 16 2023 CROSSREFS Chord Diagrams: A054499, A007769. Permutations: A001147, A000698, A003319. - Joerg Arndt Cf. A000637. - Jonathan Vos Post Sequence in context: A349535 A069321 A211179 * A293717 A186859 A331335 Adjacent sequences: A177794 A177795 A177796 * A177798 A177799 A177800 KEYWORD nonn,easy AUTHOR Frank Kuehnel, Dec 27 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 08:45 EST 2024. Contains 370228 sequences. (Running on oeis4.)