login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007769 Number of chord diagrams with n chords; number of pairings on a necklace. 13
1, 1, 2, 5, 18, 105, 902, 9749, 127072, 1915951, 32743182, 624999093, 13176573910, 304072048265, 7623505722158, 206342800616597, 5996837126024824, 186254702826289089, 6156752656678674792, 215810382466145354405, 7995774669504366055054 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Place 2n points equally spaced on a circle. Draw lines to pair up all the points so that each point has exactly one partner.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

D. Bar-Natan, On the Vassiliev Knot Invariants, Topology 34 (1995) 423-472.

D. Bar-Natan, Bibliography of Vassiliev Invariants.

W. Y.-C. Chen, D. C. Torney, Equivalence classes of matchings and lattice-square designs, Discr. Appl. Math. 145 (3) (2005) 349-357., table of C_2n.

Combinatorial Object Server, Information on Chord Diagrams

Étienne Ghys, A Singular Mathematical Promenade, arXiv:1612.06373 [math.GT], 2016. See p. 252.

A. Khruzin, Enumeration of chord diagrams, arXiv:math/0008209 [math.CO], 2000.

R. J. Mathar, Feynman diagrams of the QED vacuum polarization, vixra:1901.0148 (2019), Section V.

Joe Sawada, A fast algorithm for generating nonisomorphic chord diagrams, SIAM J. Discrete Math, Vol. 15, No. 4, 2002, pp. 546-561.

Alexander Stoimenow, On the number of chord diagrams, Discr. Math. 218 (2000), 209-233.

Index entries for sequences related to necklaces

FORMULA

2n a_n = Sum_{2n=pq} alpha(p, q)phi(q), phi = Euler function, alpha(p, q) = Sum_{k >= 0} binomial(p, 2k) q^k (2k-1)!! if q even, = q^{p/2} (p-1)!! if q odd.

MAPLE

with(numtheory):

alpha:=proc(p, q):if is(q, even) then

add(binomial(p, 2*k)*q^k*doublefactorial(2*k-1), k=0..p/2)

else q^(p/2)*doublefactorial(p-1) fi end:

a:=n->add(alpha(2*n/p, p)*phi(p), p=divisors(2*n))/2/n:

a(0):=1:seq(a(k), k=0..20); # Robert FERREOL, Oct 10 2018

MATHEMATICA

max = 20; alpha[p_, q_?EvenQ] := Sum[Binomial[p, 2k]*q^k*(2k-1)!!, {k, 0, max}]; alpha[p_, q_?OddQ] := q^(p/2)*(p-1)!!; a[0] = 1; a[n_] := Sum[q = 2n/p; alpha[p, q]*EulerPhi[q], {p, Divisors[2n]}]/(2n); Table[a[n], {n, 0, max}] (* Jean-François Alcover, May 07 2012, after R. J. Mathar *)

Stoimenow states that a Mma package is available from his website. - N. J. A. Sloane, Jul 26 2018

PROG

(PARI) doublefactorial(n)={ local(resul) ; resul=1 ; forstep(i=n, 2, -2, resul *= i ; ) ; return(resul) ; }

alpha(n, q)={ if(q %2, return( q^(p/2)*doublefactorial(p-1)), return( sum(k=0, p/2, binomial(p, 2*k)*q^k*doublefactorial(2*k-1)) ) ; ) ; }

A007769(n)={ local(resul, q) ; if(n==0, return(1), resul=0 ; fordiv(2*n, p, q=2*n/p ; resul += alpha(p, q)*eulerphi(q) ; ); return(resul/(2*n)) ; ) ; } { for(n=0, 20, print(n, " ", A007769(n)) ; ) ; } \\ R. J. Mathar, Oct 26 2006

CROSSREFS

Cf. A054499, A104255, A279207, A279208.

Sequence in context: A005639 A093730 A304918 * A174122 A005805 A058338

Adjacent sequences:  A007766 A007767 A007768 * A007770 A007771 A007772

KEYWORD

nonn,easy,nice

AUTHOR

Jean.Betrema(AT)labri.u-bordeaux.fr

EXTENSIONS

More terms from Christian G. Bower, Apr 06 2000

Corrected and extended by R. J. Mathar, Oct 26 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 16:42 EST 2019. Contains 329879 sequences. (Running on oeis4.)