login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054499 Number of pairings on a bracelet; number of chord diagrams that can be turned over and having n chords. 20
1, 1, 2, 5, 17, 79, 554, 5283, 65346, 966156, 16411700, 312700297, 6589356711, 152041845075, 3811786161002, 103171594789775, 2998419746654530, 93127358763431113, 3078376375601255821, 107905191542909828013, 3997887336845307589431 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Place 2n points equally spaced on a circle. Draw lines to pair up all the points so that each point has exactly one partner. Allow turning over.
REFERENCES
R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
LINKS
W. Y.-C. Chen, D. C. Torney, Equivalence classes of matchings and lattice-square designs, Discr. Appl. Math. 145 (3) (2005) 349-357.
Étienne Ghys, A Singular Mathematical Promenade, arXiv:1612.06373 [math.GT], 2016-2017. See p. 252.
A. Khruzin, Enumeration of chord diagrams, arXiv:math/0008209 [math.CO], 2000.
V. A. Liskovets, Some easily derivable sequences, J. Integer Sequences, 3 (2000), #00.2.2.
R. J. Mathar, Chord Diagrams A054499 (2018)
R. J. Mathar, Feynman diagrams of the QED vacuum polarization, vixra:1901.0148 (2019)
R. C. Read, Letter to N. J. A. Sloane, Feb 04 1971 (gives initial terms of this sequence)
Alexander Stoimenow, On the number of chord diagrams, Discr. Math. 218 (2000), 209-233.
FORMULA
a(n) = (2*A007769(n) + A047974(n) + A047974(n-1))/4 for n > 0.
EXAMPLE
For n=3, there are 5 bracelets with 3 pairs of beads. They are represented by the words aabbcc, aabcbc, aabccb, abacbc, and abcabc. All of the 6!/(2*2*2) = 90 combinations can be derived from these by some combination of relabeling the pairs, rotation, and reflection. So a(3) = 5. - Michael B. Porter, Jul 27 2016
MATHEMATICA
max = 19;
alpha[p_, q_?EvenQ] := Sum[Binomial[p, 2*k]*q^k*(2*k-1)!!, {k, 0, max}];
alpha[p_, q_?OddQ] := q^(p/2)*(p-1)!!;
a[0] = 1;
a[n_] := 1/4*(Abs[HermiteH[n-1, I/2]] + Abs[HermiteH[n, I/2]] + (2*Sum[Block[{q = (2*n)/p}, alpha[p, q]*EulerPhi[q]], {p, Divisors[ 2*n]}])/(2*n));
Table[a[n], {n, 0, max}] (* Jean-François Alcover, Sep 05 2013, after R. J. Mathar; corrected by Andrey Zabolotskiy, Jul 27 2016 *)
CROSSREFS
Cf. A007769, A104256, A279207, A279208, A003437 (loopless chord diagrams), A322176 (marked chords), A362657, A362658, A362659 (three, four, five instances of each color rather than two), A371305 (Multiset Transf.).
Sequence in context: A289739 A243337 A259622 * A001186 A125282 A020125
KEYWORD
nonn,easy,nice
AUTHOR
Christian G. Bower, Apr 06 2000 based on a problem by Wouter Meeussen
EXTENSIONS
Corrected and extended by N. J. A. Sloane, Oct 29 2006
a(0)=1 prepended back again by Andrey Zabolotskiy, Jul 27 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 22 02:54 EDT 2024. Contains 371887 sequences. (Running on oeis4.)