The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A177794 G.f. A satisfies -x+(1+x^3-x)*A+(x^4-x^2)*A^2+(x^5-x^3)*A^3-x^4*A^4 = 0. 2
 1, 1, 1, 1, 2, 4, 8, 16, 33, 69, 145, 306, 651, 1398, 3026, 6590, 14425, 31720, 70040, 155229, 345193, 770002, 1722487, 3863274, 8685608, 19570860, 44188976, 99965361, 226548082, 514275345, 1169255837, 2662319778, 6070294053, 13858727891, 31678845485 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Used in the enumeration of prudent self-avoiding walks. LINKS Alois P. Heinz, Table of n, a(n) for n = 1..1000 S. Gao, H. Niederhausen, Sequences Arising From Prudent Self-Avoiding Walks, (submitted to INTEGERS: The Electronic Journal of Combinatorial Number Theory). MATHEMATICA m = 36; A[_] = 0; Do[A[x_] = (x + A[x]^2*x^2 + A[x]^3*x^3 + A[x]^2*(-1 + A[x]^2)*x^4 - A[x]^3*x^5)/(1 - x + x^3) + O[x]^m, {m}]; CoefficientList[A[x]/x, x] (* Jean-François Alcover, Oct 03 2019 *) PROG (PARI) /* verification */ V177794=[1, 1, 1, 1, 2, 4, 8, 16, 33, 69, 145]; A=x*Ser(V177794); /*  = x + x^2 + x^3 + x^4 + 2*x^5 + 4*x^6 + 8*x^7 + ... */ -x+(1+x^3-x)*A+(x^4-x^2)*A^2+(x^5-x^3)*A^3-x^4*A^4 /* = O(x^12) = "zero" */ /* Joerg Arndt, May 14 2011 */ CROSSREFS Cf. A178035. Sequence in context: A098588 A126683 A005821 * A004149 A129986 A317880 Adjacent sequences:  A177791 A177792 A177793 * A177795 A177796 A177797 KEYWORD nonn AUTHOR This sequence was derived by Dr. Aaron Meyerowitz and submitted by Shanzhen Gao, May 13 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 22:15 EDT 2021. Contains 343992 sequences. (Running on oeis4.)