login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294214
E.g.f.: exp(1/((1-x)*(1-x^2)*(1-x^3)) - 1).
3
1, 1, 5, 31, 241, 2261, 25501, 319915, 4564001, 71905321, 1240694101, 23250921431, 470598127825, 10200501671101, 236040247113581, 5800885227542371, 150850086300786241, 4137020164029442385, 119309846230265324581, 3608164806033723494671
OFFSET
0,3
LINKS
FORMULA
a(n) = a(n-1) + 2*(n-1)*n*a(n-2) + (n-2)*(n-1)*(2*n+1)*a(n-3) - (n-10)*(n-3)*(n-2)*(n-1)*a(n-4) - 4*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-5) - (n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-6) + 2*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-7) + 2*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-8) - (n-10)*(n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-10). - Vaclav Kotesovec, Dec 02 2021
a(n) ~ exp(-101/144 + 29*n^(1/4)/(36*2^(3/4)) + sqrt(n/2) + 2^(7/4)*n^(3/4)/3 - n) * n^(n - 1/8) / 2^(9/8) * (1 + 71323/(103680*2^(1/4)*n^(1/4))). - Vaclav Kotesovec, Dec 02 2021
MATHEMATICA
nmax = 20; CoefficientList[Series[E^(1/((1-x)*(1-x^2)*(1-x^3)) - 1), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Dec 02 2021 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(serlaplace(exp(1/((1-x)*(1-x^2)*(1-x^3))-1)))
CROSSREFS
Column k=3 of A294212.
Sequence in context: A186859 A331335 A082579 * A261498 A368320 A276312
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 25 2017
STATUS
approved