login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276312
Number of up-down sequences of length n and values in {1,2,...,n}.
3
1, 1, 1, 5, 31, 246, 2353, 26585, 345775, 5094220, 83833256, 1524414737, 30353430420, 656851828075, 15350023574061, 385261255931365, 10335781852020335, 295166535640444376, 8939894824857438940, 286234265613041061128, 9659753724363828753408
OFFSET
0,4
LINKS
FORMULA
a(n) ~ exp(-1/2) * 2^(n+2) * n^n / Pi^(n+1). - Vaclav Kotesovec, Aug 30 2016
EXAMPLE
a(0) = 1: the empty sequence.
a(1) = 1: 1.
a(2) = 1: 12.
a(3) = 5: 121, 131, 132, 231, 232.
a(4) = 31: 1212, 1213, 1214, 1312, 1313, 1314, 1323, 1324, 1412, 1413, 1414, 1423, 1424, 1434, 2312, 2313, 2314, 2323, 2324, 2412, 2413, 2414, 2423, 2424, 2434, 3412, 3413, 3414, 3423, 3424, 3434.
MAPLE
b:= proc(n, k, t) option remember; `if`(n=0, 1,
add(b(n-1, k, k-j), j=1..t-1))
end:
a:= n-> b(n, n+1$2):
seq(a(n), n=0..25);
MATHEMATICA
b[n_, k_, t_] := b[n, k, t] = If[n==0, 1, Sum[b[n-1, k, k-j], {j, 1, t-1}]];
a[n_] := b[n, n+1, n+1];
a /@ Range[0, 25] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)
CROSSREFS
A diagonal of A050446, A050447.
Cf. A276313.
Sequence in context: A294214 A261498 A368320 * A375525 A024451 A046852
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 29 2016
STATUS
approved