login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276310
G.f. A(x) satisfies: x = A(x)-2*A(x)^2-2*A(x)^3.
4
1, 2, 10, 60, 404, 2912, 21984, 171600, 1373680, 11215776, 93039648, 781936896, 6643741440, 56973685760, 492482782208, 4286561051904, 37536888622848, 330471001126400, 2923338431270400, 25970490200202240, 231607762146309120, 2072719382680535040
OFFSET
1,2
LINKS
Elżbieta Liszewska, Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
Thomas M. Richardson, The three 'R's and the Riordan dual, arXiv:1609.01193 [math.CO], 2016.
FORMULA
G.f.: Series_Reversion(x - 2*x^2 - 2*x^3).
Conjecture: 3*n*(n-1)*a(n) -13*(n-1)*(2*n-3)*a(n-1) -3*(3*n-5)*(3*n-7)*a(n-2)=0. - R. J. Mathar, Sep 17 2016
a(n) ~ (13 + 5*sqrt(10))^(n - 1/2) / (2^(5/4) * 5^(1/4) * sqrt(Pi) * n^(3/2) * 3^(n - 1/2)). - Vaclav Kotesovec, Aug 22 2017
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 10*x^3 + 60*x^4 + 404*x^5 + 2912*x^6 + 21984*x^7 +...
Related expansions.
A(x)^2 = x^2 + 4*x^3 + 24*x^4 + 160*x^5 + 1148*x^6 + 8640*x^7 + 67296*x^8 +...
A(x)^3 = x^3 + 6*x^4 + 42*x^5 + 308*x^6 + 2352*x^7 + 18504*x^8 +...
where x = A(x) - 2*A(x)^2 - 2*A(x)^3.
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x - 2*x^2 - 2*x^3, {x, 0, 20}], x], x]] (* Vaclav Kotesovec, Aug 22 2017 *)
PROG
(PARI) {a(n)=polcoeff(serreverse(x - 2*x^2 - 2*x^3 + x^2*O(x^n)), n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Tom Richardson, Aug 29 2016
STATUS
approved