login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294212
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f.: exp(Product_{j=1..n} 1/(1-x^j) - 1).
7
1, 1, 0, 1, 1, 0, 1, 1, 3, 0, 1, 1, 5, 13, 0, 1, 1, 5, 25, 73, 0, 1, 1, 5, 31, 193, 501, 0, 1, 1, 5, 31, 241, 1601, 4051, 0, 1, 1, 5, 31, 265, 2261, 16741, 37633, 0, 1, 1, 5, 31, 265, 2501, 25501, 190345, 394353, 0, 1, 1, 5, 31, 265, 2621, 29461, 319915, 2509025
OFFSET
0,9
LINKS
FORMULA
B(j,k) is the coefficient of Product_{i=1..k} 1/(1-x^i).
A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..n} j*B(j,k)*A(n-j,k)/(n-j)! for n > 0.
EXAMPLE
Square array B(j,k) begins:
1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, ...
0, 1, 2, 3, 3, ...
0, 1, 3, 4, 5, ...
0, 1, 3, 5, 6, ...
Square array A(n,k) begins:
1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, ...
0, 3, 5, 5, 5, ...
0, 13, 25, 31, 31, ...
0, 73, 193, 241, 265, ...
0, 501, 1601, 2261, 2501, ...
CROSSREFS
Columns k=0..5 give A000007, A000262, A294213, A294214, A294215, A294216.
Rows n=0 gives A000012.
Main diagonal gives A058892.
Sequence in context: A140166 A242782 A011256 * A220691 A271023 A370041
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Oct 25 2017
STATUS
approved