login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370041
Triangle of coefficients T(n,k) in g.f. A(x,y) satisfying Sum_{n=-oo..+oo} (x^n - y*A(x,y))^n = 1 - (y-2)*Sum_{n>=1} x^(n^2), for n >= 1, as read by rows.
17
1, 0, 1, -1, 0, 1, 1, -3, 0, 1, 1, 6, -6, 0, 1, -1, 6, 19, -10, 0, 1, -2, -18, 17, 44, -15, 0, 1, 1, -4, -98, 35, 85, -21, 0, 1, 4, 36, 39, -334, 60, 146, -28, 0, 1, -2, 11, 291, 311, -879, 91, 231, -36, 0, 1, -5, -74, -264, 1310, 1286, -1960, 126, 344, -45, 0, 1, 3, -30, -627, -2547, 4248, 3935, -3892, 162, 489, -55, 0, 1
OFFSET
1,8
COMMENTS
A370031(n) = Sum_{k=0..n-1} T(n,k), for n >= 1.
A355868(n) = Sum_{k=0..n-1} T(n,k) * 2^k, for n >= 1.
A370033(n) = Sum_{k=0..n-1} T(n,k) * 3^k, for n >= 1.
A370034(n) = Sum_{k=0..n-1} T(n,k) * 4^k, for n >= 1.
A370035(n) = Sum_{k=0..n-1} T(n,k) * 5^k, for n >= 1.
A370036(n) = Sum_{k=0..n-1} T(n,k) * 6^k, for n >= 1.
A370037(n) = Sum_{k=0..n-1} T(n,k) * 7^k, for n >= 1.
A370038(n) = Sum_{k=0..n-1} T(n,k) * 8^k, for n >= 1.
A370039(n) = Sum_{k=0..n-1} T(n,k) * 9^k, for n >= 1.
A370043(n) = Sum_{k=0..n-1} T(n,k) * 10^k, for n >= 1.
LINKS
FORMULA
G.f. A(x,y) = Sum_{n>=1} T(n,k)*x^n*y^k satisfies the following formulas.
(1) Sum_{n=-oo..+oo} (x^n - y*A(x,y))^n = 1 - (y-2)*Sum_{n>=1} x^(n^2).
(2) Sum_{n=-oo..+oo} x^n * (x^n + y*A(x,y))^(n-1) = 1 - (y-2)*Sum_{n>=1} x^(n^2).
(3) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n - y*A(x,y))^n = 0.
(4) Sum_{n=-oo..+oo} x^(n^2) / (1 - x^n*y*A(x,y))^n = 1 - (y-2)*Sum_{n>=1} x^(n^2).
(5) Sum_{n=-oo..+oo} x^(n^2) / (1 + x^n*y*A(x,y))^(n+1) = 1 - (y-2)*Sum_{n>=1} x^(n^2).
(6) Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 - x^n*y*A(x,y))^n = 0.
(7) A(x,y) = (1/y) * Integral Q(x) / Sum_{n=-oo..+oo} n * (x^n - y*A(x,y))^(n-1) dy, where Q(x) = Sum_{n>=1} x^(n^2).
(8) A(x,y=0) = (theta_3(x) - 1)/2 * Product_{n>=1} (1 - x^(4*n-2)) / (1 - x^(4*n)), which is the g.f. of column 0 (A370153) defined at y = 0.
EXAMPLE
G.f.: A(x,y) = x*(1) + x^2*(0 + y) + x^3*(-1 + y^2) + x^4*(1 - 3*y + y^3) + x^5*(1 + 6*y - 6*y^2 + y^4) + x^6*(-1 + 6*y + 19*y^2 - 10*y^3 + y^5) + x^7*(-2 - 18*y + 17*y^2 + 44*y^3 - 15*y^4 + y^6) + x^8*(1 - 4*y - 98*y^2 + 35*y^3 + 85*y^4 - 21*y^5 + y^7) + x^9*(4 + 36*y + 39*y^2 - 334*y^3 + 60*y^4 + 146*y^5 - 28*y^6 + y^8) + x^10*(-2 + 11*y + 291*y^2 + 311*y^3 - 879*y^4 + 91*y^5 + 231*y^6 - 36*y^7 + y^9) + ...
where
Sum_{n=-oo..+oo} (x^n - y*A(x,y))^n = 1 - (y-2)*Sum_{n>=1} x^(n^2).
TRIANGLE.
This triangle of coefficients T(n,k) of x^n*y^k in g.f. A(x,y) begins
1;
0, 1;
-1, 0, 1;
1, -3, 0, 1;
1, 6, -6, 0, 1;
-1, 6, 19, -10, 0, 1;
-2, -18, 17, 44, -15, 0, 1;
1, -4, -98, 35, 85, -21, 0, 1;
4, 36, 39, -334, 60, 146, -28, 0, 1;
-2, 11, 291, 311, -879, 91, 231, -36, 0, 1;
-5, -74, -264, 1310, 1286, -1960, 126, 344, -45, 0, 1;
3, -30, -627, -2547, 4248, 3935, -3892, 162, 489, -55, 0, 1;
6, 178, 773, -2626, -12982, 11138, 9989, -7092, 195, 670, -66, 0, 1;
-4, 40, 1525, 10094, -5842, -48126, 25138, 22258, -12093, 220, 891, -78, 0, 1;
...
PROG
(PARI) /* Generate A(x, y) by use of definition in name */
{T(n, k) = my(A=[0, 1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff( sum(m=-sqrtint(#A+1), #A, (x^m - y*Ser(A))^m ) - 1 + (y-2)*sum(m=1, sqrtint(#A+1), x^(m^2) ), #A-1)/y ); polcoeff(A[n+1], k, y)}
for(n=1, 15, for(k=0, n-1, print1(T(n, k), ", ")); print(""))
(PARI) /* Generate A(x, y) recursively using integration wrt y */
{T(n, k) = my(A = x +x*O(x^n), M=sqrtint(n+1), Q = sum(m=1, M, x^(m^2)) +x*O(x^n));
for(i=0, n, A = (1/y) * intformal( Q / sum(m=-M, n, m * (x^m - y*A)^(m-1)), y) +x*O(x^n));
polcoeff(polcoeff(A, n, x), k, y)}
for(n=1, 15, for(k=0, n-1, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A370153 (column 0), A370154 (column 1), A370155 (column 2).
Cf. A370040 (dual triangle).
Sequence in context: A294212 A220691 A271023 * A143624 A126308 A370040
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Feb 10 2024
STATUS
approved