login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370036
Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (x^n - 6*A(x))^n = 1 - 4*Sum_{n>=1} x^(n^2).
13
1, 6, 35, 199, 1117, 6335, 37222, 230809, 1515784, 10423684, 73758799, 529151547, 3815582934, 27567473744, 199625904531, 1451286365478, 10610026385893, 78068267016226, 578088243024187, 4304808678569939, 32204405165738517, 241805832191132439, 1820963567348143772
OFFSET
1,2
COMMENTS
A related function is theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2).
LINKS
Eric Weisstein's World of Mathematics, Jacobi Theta Functions
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) Sum_{n=-oo..+oo} (x^n - 6*A(x))^n = 1 - 4*Sum_{n>=1} x^(n^2).
(2) Sum_{n=-oo..+oo} x^n * (x^n + 6*A(x))^(n-1) = 1 - 4*Sum_{n>=1} x^(n^2).
(3) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n - 6*A(x))^n = 0.
(4) Sum_{n=-oo..+oo} x^(n^2) / (1 - 6*x^n*A(x))^n = 1 - 4*Sum_{n>=1} x^(n^2).
(5) Sum_{n=-oo..+oo} x^(n^2) / (1 + 6*x^n*A(x))^(n+1) = 1 - 4*Sum_{n>=1} x^(n^2).
(6) Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 - 6*x^n*A(x))^n = 0.
EXAMPLE
G.f.: A(x) = x + 6*x^2 + 35*x^3 + 199*x^4 + 1117*x^5 + 6335*x^6 + 37222*x^7 + 230809*x^8 + 1515784*x^9 + 10423684*x^10 + 73758799*x^11 + 529151547*x^12 + ...
where
Sum_{n=-oo..+oo} (x^n - 6*A(x))^n = 1 - 4*x - 4*x^4 - 4*x^9 - 4*x^16 - 4*x^25 - 4*x^36 - 4*x^49 - ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.05816104948088020874729529058423242784366544822359858088...
then Sum_{n=-oo..+oo} (exp(-n*Pi) - 6*A)^n = 3 - 2*Pi^(1/4)/gamma(3/4) = 0.82713037757338397...
(V.2) Let A = A(exp(-2*Pi)) = 0.001888597166059649200752082246148944967408910981759517793...
then Sum_{n=-oo..+oo} (exp(-2*n*Pi) - 6*A)^n = 3 - 2*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4) = 0.9925302290245218...
(V.3) Let A = A(-exp(-Pi)) = -0.03427512499419794844050440831018295417511284891315471397...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-n*Pi) - 6*A)^n = 3 - 2*(Pi/2)^(1/4)/gamma(3/4) = 1.172841723687766...
(V.4) Let A = A(-exp(-2*Pi)) = -0.001846744216948148769402996728724142172026226548695349349...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-2*n*Pi) - 6*A)^n = 3 - 2*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4) = 1.007469770878185...
PROG
(PARI) {a(n) = my(A=[0, 1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff( sum(m=-#A, #A, (x^m - 6*Ser(A))^m ) - 1 + 4*sum(m=1, #A, x^(m^2) ), #A-1)/6 ); A[n+1]}
for(n=1, 30, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 10 2024
STATUS
approved