login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370030
Table in which the g.f. of row n, R(n,x), satisfies Sum_{k=-oo..+oo} (x^k - n*R(n,x))^k = 1 - (n-2)*Sum_{k>=1} x^(k^2), for n >= 1, as read by antidiagonals.
14
1, 1, 1, 1, 2, 0, 1, 3, 3, -1, 1, 4, 8, 3, 2, 1, 5, 15, 19, 5, 15, 1, 6, 24, 53, 46, 39, 27, 1, 7, 35, 111, 185, 161, 206, -1, 1, 8, 48, 199, 506, 711, 799, 697, -76, 1, 9, 63, 323, 1117, 2379, 3270, 4021, 1656, 19, 1, 10, 80, 489, 2150, 6335, 12083, 17297, 17932, 3208, 719, 1, 11, 99, 703, 3761, 14349, 37222, 67531, 95108, 71311, 8727, 1687
OFFSET
1,5
COMMENTS
A related function is theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2).
LINKS
Eric Weisstein's World of Mathematics, Jacobi Theta Functions
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) Sum_{k=-oo..+oo} (x^k - n*R(n,x))^k = 1 - (n-2)*Sum_{k>=1} x^(k^2).
(2) Sum_{k=-oo..+oo} x^k * (x^k + n*R(n,x))^(k-1) = 1 - (n-2)*Sum_{k>=1} x^(k^2).
(3) Sum_{k=-oo..+oo} (-1)^k * x^k * (x^k - n*R(n,x))^k = 0.
(4) Sum_{k=-oo..+oo} x^(k^2) / (1 - n*R(n,x)*x^k)^k = 1 - (n-2)*Sum_{k>=1} x^(k^2).
(5) Sum_{k=-oo..+oo} x^(k^2) / (1 + n*R(n,x)*x^k)^(k+1) = 1 - (n-2)*Sum_{k>=1} x^(k^2).
(6) Sum_{k=-oo..+oo} (-1)^k * x^(k*(k-1)) / (1 - n*R(n,x)*x^k)^k = 0.
EXAMPLE
This table of coefficients T(n,k) of x^k in R(n,x), n >= 1, k >= 1, begins:
A370031: [1, 1, 0, -1, 2, 15, 27, -1, -76, ...];
A355868: [1, 2, 3, 3, 5, 39, 206, 697, 1656, ...];
A370033: [1, 3, 8, 19, 46, 161, 799, 4021, 17932, ...];
A370034: [1, 4, 15, 53, 185, 711, 3270, 17297, 95108, ...];
A370035: [1, 5, 24, 111, 506, 2379, 12083, 67531, 406284, ...];
A370036: [1, 6, 35, 199, 1117, 6335, 37222, 230809, 1515784, ...];
A370037: [1, 7, 48, 323, 2150, 14349, 97431, 681857, 4956116, ...];
A370038: [1, 8, 63, 489, 3761, 28911, 224174, 1768801, 14298852, ...];
A370039: [1, 9, 80, 703, 6130, 53351, 466315, 4118167, 36941188, ...];
A370043: [1, 10, 99, 971, 9461, 91959, 895518, 8775161, 86870264, ...]; ...
...
where the n-th row function R(n,x) satisfies
Sum_{k=-oo..+oo} (x^k - n*R(n,x))^k = 1 - (n-2)*Sum_{k>=1} x^(k^2).
PROG
(PARI) {T(n, k) = my(A=[0, 1]); for(i=0, k, A = concat(A, 0);
A[#A] = polcoeff( sum(m=-sqrtint(#A+1), #A, (x^m - n*Ser(A))^m ) - 1 + (n-2)*sum(m=1, sqrtint(#A+1), x^(m^2) ), #A-1)/n ); A[k+1]}
for(n=1, 12, for(k=1, 10, print1(T(n, k), ", ")); print(""))
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Feb 10 2024
STATUS
approved