login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A297477
Triangle read by rows: T(n, k) gives the coefficients of x^k of the characteristic polynomial P(n, x) of the n X n matrix M with entries M(i, j) = 1 if i = 1 or j = 1, -1 if i = j > 1, and 0 otherwise. T(0, 0):= 0.
0
0, 1, -1, -2, 0, 1, 3, 3, -1, -1, -4, -8, -3, 2, 1, 5, 15, 14, 2, -3, -1, -6, -24, -35, -20, 0, 4, 1, 7, 35, 69, 65, 25, -3, -5, -1, -8, -48, -119, -154, -105, -28, 7, 6, 1, 9, 63, 188, 308, 294, 154, 28, -12, -7, -1, -10, -80, -279, -552, -672, -504, -210, -24, 18, 8, 1
OFFSET
0,4
COMMENTS
The norm of the matrix M appears to be sqrt(n), where with norm is meant the eigenvalue of the largest magnitude, negative or positive. Row sums appear to be A085750 [see below for the proof].
Also the coefficients of the characteristic polynomial of the matrix defined by the recurrence: A(n, k) = if n < k then if and(n > 1, k > 1) then Sum_{i=1..k-1} -A(k-i, n) else 0 else if and(n > 1, k > 1) then Sum_{i=1..n-1} -A(n-i, k) else 0.
By letting the upper summation indexes "k-1" and "n-1" in the recurrence above, change place with each other one gets the number theoretic matrix A191898, and it appears that the eigenvalue norm sqrt(n) of this matrix is a lower bound for the eigenvalue norm of matrix A191898 which in turn for n>10 appears to be close to A007917, the previous prime sequence. If the eigenvalue norm of matrix A191898 also can be proven to be less than n+1, then one could say that there is always a prime gap between sqrt(n) and n+1.
From Wolfdieter Lang, Feb 32 2018: (Start)
The characteristic polynomial P(n, x) = Det(M_n - x*1_n), with the n X n matrix M_n defined in the name and 1_n the n dimensional unit matrix, satisfies, after expanding the last row, the recurrence: P(n, x) = -z*P(n-1, x) + (-1)^(n-1)*z^(n-2), for n >= 2, and input P(1, x) = y, where y = 1-x and z = 1+x. The solution is P(n, x) = y*(-z)^(n-1) - (n-1)*(-z)^(n-2) = (-1)^n*(1 + x)^(n-2)*(x^2 - n), for n >= 1. After picking the coefficient of x^k this becomes the formula for T(n, k) given in the formula section.
The Determinant of M_n is P(n, 0) = T(n, 0) = (-1)^n*n = A181983(n).
The eigenvalues of M_n are +1 for n = 1 and for n >= 2 they are +sqrt(n), -sqrt(n), and n-2 times -1.
Therefore the spectral radius (absolute value of the maximal eigenvalue) is rho_n = sqrt(n), and the spectral norm of M_n (square root of the maximal eigenvalue of (M_n)^+ M_n is also sqrt(n), for n >= 1. See the conjecture in the first comment above.
The square of the Frobenius norm (aka Hilbert-Schmidt norm) of M_n is max_{i,j=1..n} |M_n(i,j)|^2 = 3*n - 2 = A016777(n-1), for n >= 1.
The row sums are P(n, 1) = (-1)^(n-1)*(n-1)*2^(n-2) = A085750(n), for n >= 1, and for n=0 the row sum is 0. The alternating row sums are P(n, -1) = 2 for n=1, -1 for n = 2, and zero otherwise.
The column sequence (without leading zero) for k = 1 is (-1)^(n+1)*n*(n-2), for n >= 1, which is -A131386(n). For k = 2 it is (-1)^n*(1 - n*binomial(n-2, 2)) for n >= 2 which is (-1)^n*A110427(n-1). Other columns follow from the formula for T(n, k). (End)
FORMULA
From Wolfdieter Lang, Feb 02 2018: (Start)
T(n, k) = [x*k] P(n, x), for n >= 1, with P(n, x) = Det(M_n - x*1_n), and the matrix M_n defined in the name (1_n is the n dimensional unit matrix). T(0, 0):= 0.
T(n, k) = (-1)^(n+1)*n for k = 0, (-1)^(n+1)*n*(n-2) for k = 1, and (-1)^n*(binomial(n-2, k-2) - n*binomial(n-2, k)) for k >= 2, with n >= 0 and 0 <= k <= n. T(n, k) = 0 for k > n. (End)
EXAMPLE
The matrix for these characteristic polynomials starts:
{
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{1, -1, 0, 0, 0, 0, 0, 0, 0, 0},
{1, 0, -1, 0, 0, 0, 0, 0, 0, 0},
{1, 0, 0, -1, 0, 0, 0, 0, 0, 0},
{1, 0, 0, 0, -1, 0, 0, 0, 0, 0},
{1, 0, 0, 0, 0, -1, 0, 0, 0, 0},
{1, 0, 0, 0, 0, 0, -1, 0, 0, 0},
{1, 0, 0, 0, 0, 0, 0, -1, 0, 0},
{1, 0, 0, 0, 0, 0, 0, 0, -1, 0},
{1, 0, 0, 0, 0, 0, 0, 0, 0, -1}
}
----------------------------------------------------------------------
The table T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 ..
0: 0
1: 1 -1
2: -2 0 1
3: 3 3 -1 -1
4: -4 -8 -3 2 1
5; 5 15 14 2 -3 -1
6: -6 -24 -35 -20 0 4 1
7: 7 35 69 65 25 -3 -5 -1
8: -8 -48 -119 -154 -105 -28 7 6 1
9: 9 63 188 308 294 154 28 -12 -7 -1
10: -10 -80 -279 -552 -672 -504 -210 -24 18 8 1
11: 11 99 395 915 1350 1302 798 270 15 -25 -9 -1
12: -12 -120 -539 -1430 -2475 -2904 -2310 -1188 -330 0 33 10 1
... reformatted by Wolfdieter Lang, Feb 02 2018.
MAPLE
f:= proc(n) local M, P, lambda, k;
M:= Matrix(n, n, proc(i, j) if i=1 or j=1 then 1 elif i=j then -1 else 0 fi end proc);
P:= (-1)^n*LinearAlgebra:-CharacteristicPolynomial(M, lambda);
seq(coeff(P, lambda, k), k=0..n)
end proc:
f(0):= 0:
for n from 0 to 10 do f(n) od; # Robert Israel, Feb 02 2018
MATHEMATICA
Clear[A, x, t];
Table[t[n_, 1] = 1;
t[1, k_] = 1;
t[n_, k_] :=
t[n, k] =
If[n < k,
If[And[n > 1, k > 1], Sum[-t[k - i, n], {i, 1, k - 1}], 0],
If[And[n > 1, k > 1], Sum[-t[n - i, k], {i, 1, n - 1}], 0]];
A = Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}];
CoefficientList[CharacteristicPolynomial[A, x], x], {nn, 1, 10}];
Flatten[%]
CROSSREFS
Cf. A016777, A085750 (row sums), A067998, A110427 (column k=2), -A131386 (column k=1), A181983 (Det M_n), A191898.
Sequence in context: A068920 A363882 A099390 * A370030 A124031 A368514
KEYWORD
tabl,sign,easy
AUTHOR
Mats Granvik, Dec 30 2017
EXTENSIONS
Edited by Wolfdieter Lang, Feb 02 2018.
STATUS
approved