login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110427
The r-th term of the n-th row of the following array contains the sum of r successively decreasing integers beginning from n. 0 < r <= n. Sequence contains the leading diagonal.
5
1, 1, -3, -14, -35, -69, -119, -188, -279, -395, -539, -714, -923, -1169, -1455, -1784, -2159, -2583, -3059, -3590, -4179, -4829, -5543, -6324, -7175, -8099, -9099, -10178, -11339, -12585, -13919, -15344, -16863, -18479, -20195, -22014, -23939, -25973, -28119, -30380, -32759, -35259, -37883
OFFSET
1,3
FORMULA
From R. J. Mathar, Jul 10 2009: (Start)
a(n) = n*(1 + 2*n - n^2)/2 = n - A002411(n-1).
G.f.: x*(1 - 3*x - x^2)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
EXAMPLE
E.g., the row corresponding to 4 contains 4, (3+2),{(1) +(0)+(-1)}, {(-2)+(-3)+(-4)+(-5)} ----> 4,5,0,-14
1
2 1
3 3 -3
4 5 0 -14
5 7 3 -10 -35
6 9 6 -6 -30 -69
...
Sequence contains the leading diagonal.
PROG
(PLT DrScheme)
(first (reverse (A110425 n))
;; see A110425 for definition of that function.
-- Joshua Zucker, May 10 2006
CROSSREFS
Sequence in context: A081379 A081377 A050934 * A296294 A128916 A130287
KEYWORD
easy,sign
AUTHOR
Amarnath Murthy, Aug 01 2005
EXTENSIONS
More terms from Joshua Zucker, May 10 2006
STATUS
approved