login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068920
Table of t(r,s) read by antidiagonals: t(r,s) is the number of ways to tile an r X s room with 1 X 2 Tatami mats. At most 3 Tatami mats may meet at a point.
13
0, 1, 1, 0, 2, 0, 1, 3, 3, 1, 0, 4, 0, 4, 0, 1, 6, 4, 4, 6, 1, 0, 9, 0, 2, 0, 9, 0, 1, 13, 6, 3, 3, 6, 13, 1, 0, 19, 0, 3, 0, 3, 0, 19, 0, 1, 28, 10, 3, 2, 2, 3, 10, 28, 1, 0, 41, 0, 5, 0, 2, 0, 5, 0, 41, 0, 1, 60, 16, 5, 2, 2, 2, 2, 5, 16, 60, 1, 0, 88, 0, 6, 0, 1, 0, 1, 0, 6, 0, 88, 0, 1, 129, 26
OFFSET
1,5
COMMENTS
Rows 2-6 are given in A068921 - A068925.
EXAMPLE
Table begins:
0, 1, 0, 1, 0, 1, ...
1, 2, 3, 4, 6, 9, ...
0, 3, 0, 4, 0, 6, ...
1, 4, 4, 2, 3, 3, ...
0, 6, 0, 3, 0, 2, ...
1, 9, 6, 3, 2, 2, ...
...
MATHEMATICA
(* See link for Mathematica programs. *)
c[r_, s_] := Which[s<0, 0, r==1, 1 - Mod[s, 2], r == 2, c1[2, s] + c2[2, s] + Boole[s == 0], OddQ[r], c[r, s] = c[r, s - r + 1] + c[r, s - r - 1] + Boole[s == 0], EvenQ[r], c[r, s] = c1[r, s] + c2[r, s] + Boole[s == 0]];
c1[r_, s_] := Which[s <= 0, 0, r == 2, c[2, s - 1], EvenQ[r], c2[r, s - 1] + Boole[s == 1]];
c2[r_, s_] := Which[s <= 0, 0, r == 2, c2[2, s] = c1[2, s - 2] + Boole[s == 2], EvenQ[r], c2[r, s] = c1[r, s - r + 2] + c1[r, s - r] + Boole[s == r - 2] + Boole[s == r]];
t[r_, s_] := Which[r>s, t[s, r], OddQ[r] && r>1, 2 c[r, s], True, c[r, s]];
A068920[n_] := Module[{x}, x = Floor[(Sqrt[8 n + 1] - 1)/2]; t[n + 1 - x (x + 1)/2, (x + 1) (x + 2)/2 - n]];
Table[A068920[n], {n, 0, 100}] (* Jean-François Alcover, May 12 2017, copied and adapted from Dean Hickerson's programs *)
CROSSREFS
Cf. A068926 for incongruent tilings, A067925 for count by area.
Cf. A068921 (row 2), A068922 (row 3), A068923 (row 4), A068924 (row 5), A068925 (row 6).
Sequence in context: A291556 A323073 A167279 * A363882 A099390 A297477
KEYWORD
nonn,tabl
AUTHOR
Dean Hickerson, Mar 11 2002
STATUS
approved