login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068924
Number of ways to tile a 5 X 2n room with 1x2 Tatami mats. At most 3 Tatami mats may meet at a point.
5
6, 3, 2, 2, 4, 4, 6, 8, 10, 14, 18, 24, 32, 42, 56, 74, 98, 130, 172, 228, 302, 400, 530, 702, 930, 1232, 1632, 2162, 2864, 3794, 5026, 6658, 8820, 11684, 15478, 20504, 27162, 35982, 47666, 63144, 83648, 110810, 146792, 194458, 257602, 341250
OFFSET
1,1
LINKS
R. J. Mathar, Paving rectangular regions with rectangular tiles,...., arXiv:1311.6135 [math.CO], Table 4.
F. Ruskey and J. Woodcock, Counting Fixed-Height Tatami Tilings, Electronic Journal of Combinatorics, Paper R126 (2009) 20 pages.
FORMULA
For n >= 6, a(n) = a(n-2) + a(n-3).
G.f.: x*(-6+x^4+7*x^3+4*x^2-3*x)/(-1+x^3+x^2). [Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009; checked and corrected by R. J. Mathar, Sep 16 2009]
a(n) = 2*A000931(n+3) for n>=3. - R. J. Mathar, Dec 06 2013
CROSSREFS
Cf. A068930 for incongruent tilings, A068920 for more info. First column of A272474.
Sequence in context: A033326 A068996 A362871 * A106224 A254571 A360562
KEYWORD
easy,nonn
AUTHOR
Dean Hickerson, Mar 11 2002
STATUS
approved