login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294254
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(Product_{j=1..n} (1-x^j) - 1).
8
1, 1, 0, 1, -1, 0, 1, -1, 1, 0, 1, -1, -1, -1, 0, 1, -1, -1, 11, 1, 0, 1, -1, -1, 5, -23, -1, 0, 1, -1, -1, 5, 25, -101, 1, 0, 1, -1, -1, 5, 1, -41, 991, -1, 0, 1, -1, -1, 5, 1, 199, -1769, -1849, 1, 0, 1, -1, -1, 5, 1, 79, -1409, 7181, -24751, -1, 0, 1, -1, -1, 5
OFFSET
0,19
LINKS
FORMULA
B(j,k) is the coefficient of Product_{i=1..k} (1-x^i).
A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..min(A000217(k),n)} j*B(j,k)*A(n-j,k)/(n-j)! for n > 0.
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, ...
0, -1, -1, -1, -1, ...
0, 1, -1, -1, -1, ...
0, -1, 11, 5, 5, ...
0, 1, -23, 25, 1, ...
0, -1, -101, -41, 199, ...
CROSSREFS
Columns k=0..5 give A000007, A033999, A294255, A294256, A294257, A294258.
Rows n=0 gives A000012.
Main diagonal gives A294260.
Cf. A294250.
Sequence in context: A157712 A266379 A158215 * A216792 A359215 A260237
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Oct 26 2017
STATUS
approved