login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A001875
Convolved Fibonacci numbers.
(Formerly M4412 N1865)
5
1, 7, 35, 140, 490, 1554, 4578, 12720, 33705, 85855, 211519, 506408, 1182650, 2702350, 6056850, 13343820, 28947240, 61926900, 130814600, 273163100, 564415390, 1154933230, 2342193350, 4710707400, 9401674275, 18629923053, 36670044621, 71728832280, 139485074370
OFFSET
0,2
COMMENTS
a(n) = (((-i)^n)/6!)*((d^5/dx^5) S(n+6,x))|_{x=i}. Sixth derivative of Chebyshev S(n+6,x) polynomials evaluated at x=i (imaginary unit) multiplied by ((-i)^n)/6!. See A049310 for the S-polynomials. - Wolfdieter Lang, Apr 04 2007
a(n) = number of weak compositions of n in which exactly 6 part are 0 and all other parts are either 1 or 2. - Milan Janjic, Jun 28 2010
REFERENCES
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 101.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1979), 261-272.
LINKS
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers [Corrected annotated scanned copy]
M. S. Waterman, Home Page (contains copies of his papers)
Index entries for linear recurrences with constant coefficients, signature (7, -14, -7, 49, -14, -77, 29, 77, -14, -49, -7, 14, 7, 1).
FORMULA
G.f.: (1 - x - x^2)^(-7).
a(n) = F''''''(n+6, 1)/6!, i.e., 1/6! times the 6th derivative of the (n+6)th Fibonacci polynomial evaluated at 1. - T. D. Noe, Jan 18 2006
a(n) = Sum_{k=ceiling(n/2)..n} (k+1)*(k+2)*(k+3)*(k+4)*(k+5)*(k+6)*binomial(k,n-k)/720. - Vladimir Kruchinin, Apr 26 2011
MAPLE
a:= n-> (Matrix(14, (i, j)-> if (i=j-1) then 1 elif j=1 then [7, -14, -7, 49, -14, -77, 29, 77, -14, -49, -7, 14, 7, 1][i] else 0 fi)^n)[1, 1]: seq (a(n), n=0..22); # Alois P. Heinz, Aug 15 2008
MATHEMATICA
nn = 30; CoefficientList[Series[1/(1 - x - x^2)^7, {x, 0, nn}], x] (* T. D. Noe, Aug 10 2012 *)
LinearRecurrence[{7, -14, -7, 49, -14, -77, 29, 77, -14, -49, -7, 14, 7, 1}, {1, 7, 35, 140, 490, 1554, 4578, 12720, 33705, 85855, 211519, 506408, 1182650, 2702350}, 30] (* Harvey P. Dale, Aug 05 2023 *)
CROSSREFS
Sequence in context: A160460 A160539 A023006 * A169794 A240418 A211843
KEYWORD
nonn
STATUS
approved