login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A026608 a(n) = number of 2's between n-th 1 and (n+1)st 1 in A026600. 2
2, 0, 2, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 2, 0, 1, 2, 0, 1, 1, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 1, 1, 2, 0, 1, 2, 0, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 2, 0, 2, 0, 2, 0, 1, 1, 1, 2, 0, 2, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

From Michel Dekking, Apr 16 2019: (Start)

{a(n)} is a morphic sequence, i.e., a letter-to-letter projection of a fixed point of a morphism. This follows from a study of the return words of 1 in {a(n)}: the word 1 in {a(n)} has 7 return words. These are A:=1, B:=123, C:=12, D:=13, E:=12323, F:=1233, and G:=1223.

[See Justin & Vuillon (2000) for definition of return word. - N. J. A. Sloane, Sep 23 2019]

The sequence A026600 is a fixed point of the 3-symbol Thue-Morse morphism mu given by mu:  1->123, 2->231, 3->312.

This induces a morphism beta on the return words given by

     beta:  A->B, B->EDC, C->EA, D->FC, E->EDGDC, F->EDBC, G->EBDC.

Counting 2's in the return words yields the morphism gamma given by

     gamma: A->0, B->1, C->1, D->0, E->2, F->1, G->2.

Let y = EDGDCFCEBDCf... be the unique fixed point of beta. Then clearly (a(n)) = gamma(y).

(End)

The frequencies of 0's, 1's and 2's in {a(n)} are 4/13, 5/13 and 4/13, despite the fact that the gamma above is different from the gamma in A026609. However, the languages of the words A026609 and {a(n)} are different. The word 20201 does appear in A026608, A026611, and A026612, but not in the other triple of sequences A026609, A026610 and A026613. - Michel Dekking, Apr 16 2019

LINKS

Michael De Vlieger, Table of n, a(n) for n = 1..19683

Jacques Justin and Laurent Vuillon, Return words in Sturmian and episturmian words, RAIRO-Theoretical Informatics and Applications 34.5 (2000): 343-356.

EXAMPLE

beta(B) = mu(123) = 123231312 = EDC.

MATHEMATICA

Map[Count[#, 2] &, DeleteCases[SplitBy[#, # == 1 &], _?(# == {1} &)]] &@ Nest[Flatten[# /. {1 -> {1, 2, 3}, 2 -> {2, 3, 1}, 3 -> {3, 1, 2}}] &, {1}, 6] (* Michael De Vlieger, Apr 16 2019, after Robert G. Wilson v at A026600 *)

CROSSREFS

Cf. A026600, A026608, A026609, A026610, A026611, A026612, A026613.

Sequence in context: A240592 A001877 A112712 * A264049 A287337 A026612

Adjacent sequences:  A026605 A026606 A026607 * A026609 A026610 A026611

KEYWORD

nonn,changed

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 15:14 EDT 2019. Contains 328030 sequences. (Running on oeis4.)