|
|
A033182
|
|
Number of pairs (p,q) such that 5*p + 6*q = n.
|
|
3
|
|
|
1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,31
|
|
COMMENTS
|
Number of partitions of n into parts 5 and 6. - Seiichi Manyama, Jun 14 2017
|
|
LINKS
|
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Vincenzo Librandi)
|
|
FORMULA
|
a(n) = [ 5*n/6 ] + 1 + [ -4*n/5 ].
a(n)=floor(n/5)-floor((n-1)/6). [Mircea Merca, Oct 11 2013]
|
|
MATHEMATICA
|
nn = 86; t = Table[0, {nn}]; Do[m = 5*p + 6*q; If[0 < m <= nn, t[[m]]++], {p, 0, nn/5}, {q, 0, nn/6}]; Join[{1}, t] (* T. D. Noe, Oct 07 2013 *)
|
|
PROG
|
(MAGMA) [Floor(n/5)-Floor((n-1)/6): n in [0..100]]; // Vincenzo Librandi, Oct 13 2013
|
|
CROSSREFS
|
Cf. A033183.
Sequence in context: A097587 A001179 A001876 * A053797 A254011 A002635
Adjacent sequences: A033179 A033180 A033181 * A033183 A033184 A033185
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Michel Tixier (tixier(AT)dyadel.net)
|
|
STATUS
|
approved
|
|
|
|