OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Centered Square Number
Eric Weisstein's World of Mathematics, Distinct Prime Factors
EXAMPLE
a(4) = 99905, because 99905 is a centered square number with 4 distinct prime factors {5, 13, 29, 53} and this is the smallest such number.
PROG
(PARI) a(n) = for(k=0, oo, my(t=2*k*k + 2*k + 1); if(omega(t) == n, return(t))); \\ Daniel Suteu, Dec 29 2022
(PARI)
omega_centered_square_numbers(A, B, n) = A=max(A, vecprod(primes(n))); (f(m, p, j) = my(list=List()); forprime(q=p, sqrtnint(B\m, j), if(q%4==1, my(v=m*q, r=nextprime(q+1)); while(v <= B, if(j==1, if(v>=A, if (issquare((8*(v-1))/4 + 1) && ((sqrtint((8*(v-1))/4 + 1)-1)%2 == 0), listput(list, v))), if(v*r <= B, list=concat(list, f(v, r, j-1)))); v *= q))); list); vecsort(Vec(f(1, 2, n)));
a(n) = if(n==0, return(1)); my(x=vecprod(primes(n)), y=2*x); while(1, my(v=omega_centered_square_numbers(x, y, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Dec 29 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 22 2022
EXTENSIONS
a(8) from Jon E. Schoenfield, Dec 23 2022
a(9)-a(16) from Daniel Suteu, Dec 29 2022
STATUS
approved